
AD-A247 274

HEADQUARTERS AIR FORCE INSPECTION AND SAFETY CENTER

SYSTEM SAFETY HANDBOOKDTIC
ELECTE AF

SMARO U A0S 551 1.1
DD

SOFTWARE SYSTEM SAFETY
I

i This document Ms been approved
for public release and sale; its
ditrib u!tion ir unim ie d .

5 SEPTEMBER 1985

92-0502592 2 26 038IlllllllllUl

Best
Available

Copy

TABLE OF CONTENTS

1. PURPOSE . . .1
1.1 CONTRACT APPLICATION. 1

2. SCOPE 1
2.1 ORGANIZATION OF THIS HANDBOOK 1

4. INTRODUCTION . 3
4.1 THE SOFTWARE HAZARD 4
4.2 MANAGEMENT CONSIDERATIONS 4

5. DESIGN GUIDELINES FOR SOFTWARE SYSTEM SAFETY 5
5.1 SYSTEM CONSIDERATIONS
5.2 HARDWARE CONSIDERATIONS FOR SOFTWARE SAFETY . . .
5.3 REQUIREMENTS FOR THE VARIOUS PHASES OF SYSTEM

DEVELOPMENT . 6
5.3.1 Specification Phase 7
5.3.2 Design Phase . 0 . . .0. 7
5.3.3 Coding Phase * 7
5.3.4 Testing Phase .. . * * * * * * * a ' * * 7
5.3.5 Deployment/Operational/Maintenance Phase 7

6. SOFTWARE SAFETY ANALYSIS o 9
6.1 PRELIMINARY AND FOLLOW-ON SOFTWARE HAZARD ANALYSIS . . .

6.1.1 Preliminary Software Hazard Analysis 9
6.1.2 Follow-on Software Hazard Analysis 9

7. SOFTWARE HAZARD ANALYSIS METHODOLOGIES 10
7.1 SOFTWARE FAULT TREE (SOFT TREE) 10
7.2 SOFTWARE SNEAK CIRCUIT ANALYSIS 12
7.3 NUCLEAR SAFETY CROSS-CHECK ANALYSIS (NSCCA) 14
7.4 SAFETY ANALYSIS USING PETRI NETS 17

8. SOFTWARE SYSTEM SAFETY DESIGN RULES AND GUIDELINES 20

APPENDICES * o * 25
APPENDIX A. SOFTWARE SAFETY ANALYSIS SPECIFICATION - EXAMPLE . . 26
APPENDIX B. REQUEST FOR PROPOSAL EXAMPLE 29
APPENDIX C. STATEMENT OF WORK EXAMPLE 36

Accesion For
TIC NTIS CR &I

copy OTIC T, A
SPECTED ~:~

6 Ju~ticat:on,

No of Printed Pages: 41 By
OPR: SESD By .--. _---------
Approved by: Col Paul D. Smith Dist butionl
Editor: Ellyn Eisenbeisz Availabi C
DISTRIBUTION: X .l,

Dist " '
Ru

Department of the Air Force AFISC SSH 1-1
Headquarters Air Force Inspection and Safety Center 5 September 1985

Norton Air Force Base, California 92409-7001

SOFTWARE SYSTEM SAFETY HANDBOOK

1. PURPOSE 2.1 ORGANIZATION OF THIS HANDBOOK

The primary purpose of this handbook is to Following this introduction, this document has
document technical knowledge of safety tech- six major sections and three appendices. Sec-

niques and methodologies than can be used to tion 3 contains the specific DEFINITIONS which
support acquisition programs which involv will be used throughout the document. Section
computer/embedded computer systems. It Is 4, INTRODUCTION, begins with a rationale for
Intended to aid in the development of *safe" software safety programs and the philosophical

system software. This handbook does not and background and outlook necessary for a success-
will not describe how to design functional ful program. Section 5, DESIGN GUIDELINES FOR

performance into a system. Rather, the handbook SOFTWARE SYSTEM SAFETY, delves Into the spe-
does and will continue to describe design cific requirements necessary to design safety
choice limits, boundary values, and preferred into software systems and to insure that the
practices that relate to maximizing overall software design is analyzable. Section 6,
system safety. The major emphasis of this SOFTWARE SAFETY ANALYSIS, addresses the general
handbook is to provide an assist in specifying philosophy of the three major stages of soft-
and designing for system safety. The section ware safety analysis. Section 7, SOFTWARE
herein that provides a checklist of rules and SAFETY ANALYSIS TECHNIQUES, discusses the

guidelines is aimed at the up-front and top- various techniques used for this analysis.
down design principles. A later section Section 8, SOFTWARE SYSTEM SAFETY DESIGN RULES
describing verification and evaluation tech- AND GUIDELINES, contains design requirements
niques is aimed at picking up where specifica- and guidelines which can be used to develop

tion and design implementation perfection leave safe software. Appendices A through C contain
off. Some verification and evaluation tech- examples of a software analysis specification,
niques can serve early in the design process, a request for proposal (RFP) and a statement of

even before hardware and software is built, work. Please note that the appendices are exam-
Others serve better after software is built ples only and are not designed to be used as
(with or without target hardware). This hand- written, nor do they imply any preferred analy-
book supplements the MIL-STD-882B software sis methodologyl They all must be carefully
hazard analysis task. tailored to reflect the analysis method(s)

desired and the system on which it (they) are

1.1 CONTRACT APPLICATION to be appliedl

This handbook, of and in itself, is not con- 3. DEFINITIONS
strued or implied to be a contractual document.
The procuring activity must extract the appli- For definitions not specifically listed below,
cable handbook rules and guidelines and include the following sources, in order of preference,
them in the system specification. Specific is as follows:
tasks and data items must be called out in the
Statement of Work (SOW) and identified in the a. DOD-STD-1679A Military Standard Soft-
Data Item Descriptions (DID's). ware Development

b. IEEE Standard Glossary of Software
2. SCOPE Engineering Terminology

This document is intended for use primarily by 3.1 Built-in-test (BIT). A hardware and/or

OD program managers and technical specialists software-implemented check intended to detect

in the areas of safety and software engi- prespecified acceptable conditions (or devia-

neering. It is intended to serve as a companion tions therefrom) and to take some prespecified

document to MIL-STD-882 and to act as a guide course of action (i.e., warning, alert, shut-
in accomplishing the software safety task. down) upon detection of an anomaly.

2 AFISC SSH 1-1 5 September 1985

3.2 Code Walk-through. A manual simulation of 3.11 Graphic Representations. A tool used to
predefined test cases (i.e., test input and facilitate the translation of requirements into
expected output) led by the programmer and software design or software design into source
addressed to a small (e.g., 3-6) group of code. They are intended to be comparable to
qualified personnel, preferrably personnel not blue prints for hardware. Examples are program
directly involved with the program being design languages [PDL/Ada (Ada is the trademark
reviewed. (See also Inspection) of the U.S. Government, Ada Joint Program

Office)], (Structured English, Pseudo-Code,
3.3 Design Walk-through. A step-by-step Pidgin-English, etc.), functional flow dia-
detailed examination of the design of the grams, block diagrams, etc.
software by a small group of qualified
personnel. 3.12 Hardware. Physical parts of a system,

such as mechanical and electrical componer+s.
3.4 Det- Ii Level Analysis. Additional to switches, and input/output devices.
flow of control, i.e., making sure each data
item is correctly referenced, computed or used. 3.13 Inspection. A step-by-step examination

of the program, lead by the programmer and
3.5 Development, Software. The engineering addressed to a small group of qualified person-
process and effort that results in software, nel, preferably personnel not directly involved
encompassing the span of time from initiation with the program being reviewed. During the
of the software requirements/design effort examination each step Is checked against a
through delivery to and acceptance by the con- predetermined list of criteria.
tracting agency.

3.14 Interface Analysis. An analysis of mod-
3.6 Erroneous Bit. A single bit in a register ule interfaces and associated variables.
or memory location that was Intended to be a
21m which was interpreted as a '0' (or vice 3.15 Machine Code. Instructions that are
versa) during program execution. intended to be input directly into the

instruction register of a computer's central
3.7 Error, Software. An occurrence, or lack processing unit (CPU).
thereof, during the execution of a program
that prevents satisfaction of the specified 3.16 Microprocessor. The central electronic
software requirements, fails to perform as device which actually executes the software.
designed, or performs a function not required (Usually surrounded by peripheral devices such
and/or not desired. as memory, buffers, decoders, etc., which

allow interaction with the rest of the system
3.8 Fault Tree. An analytical technique, involved.)
whereby an undesired system state is specified
and the system is then analyzed in the context 3.17 Mnemonic Operation Codes. Computer
of its environment and operation to find all instructions written in a meaningful human
credible ways in which the undesired event notation, i.e., ADD, STO, etc., but which must
could occur. be converted on a one-to-one basis into machine

language for computer operation.
3.9 Firmware. Software which resides in non-
volatile computer memory that is not alterable 3.18 Node. A point where several paths meet.
by the computer system during program execu-
tion. For the purpose of system safety, firm- 3.19 Object Code. Compiler or assembler output
ware is to treated as any other piece of that is itself executable machine code or tnat
software, can be processed to produce executable machine

code. For the purpose of software analysis.
3.10 Flow Chart/Diagram. A graphic representa- object code is normally analyzed by looking at
tion of the processing order or execution of its mnemonic representation. This memonic
instructions and subroutines in which symbols code can be produced by compilers which produce
are used to represent operations, data, flow, intermediate assembler code or through a disas-
equipment, etc. sembly process.

AFISC SSH 1-1 5 September 1985 3

3.20 RAN. Random access memory. responses that could result In safety critical
hazards.

3.21 Requirements Walk-through. A step-by-
step, detailed examination of the requirements 3.30 Source Code. A computer program written
of the software. in a language designed for ease of expression

of a class of problems or procedures by human.

3.22 ROM. Read only memory. A generator, assembler, translator, or com-
piler Is used to then translate the source

3.23 Safety Critical. Those software opera- program into object code for use by the
tions that, if not performed, performed out-of- computer.
sequence, or performed incorrectly could result
in improper control functions (or lack of con- 3.31 System. The equipment, facilities, soft-
trol functions required for proper system ware, operator, maintainer, and technical data
operation) which could directly or Indirectly associated with a single entity (weapon

cause or allow a hazardous condition to exist, system).

3.24 Soft Tree. A term coined to describe a 3.32 System Allocation Documents. Various
fault tree which is constructed on a system specification and requirement documents
which includes a software interfacing with (requirements/performance specifications) which
hardware. A software fault tree. represent the flow of system-level requirements

Into subsystems.

3.25 Software. A combination of associated
computer instructions, statements, and com- 3.33 System Level Analysis. Analysis con-

puter program data definitions required to cerned with flow of control, and data items and
enable the computer hardware to perform compu- variables Influencing it.
tational or control functions. Note: This
definition includes firmware within its appli-
cability. This definition of software is inde- 4. INTRODUCTION
pendent of the type of physical storage media
in which the software resides. The development and usage of microprocessors

and computers has grown at a phenomenal rate In
3.26 Software Element. A constituent part of recent years, from 1955, when only 10 per cent
the system's software. The following would be of our weapon systems required computer soft-
examples of software or program elements: ware, to today, when the figure is to over 80
programs, routines, modules, tables, or per cent. This increased reliance on computers
variables. has put the aerospace industry and the military

in the position of controlling hazardous sys-

3.27 Software Reliability. The probability tems with computers and associated software.
that the software will execute for a particu- Examples of this include the Minuteman and
lar period of time without a failure, weighted Peacekeeper weapon systems and the F-16 fly-
by the cost to the user of each failure by-wire system. This use of computers, while
encountered. improving system performance, has also compli-

cated the job of the safety engineer as
3.28 Software Safety. The application of methods to ensure the safety of the computer-
system safety engineering techniques to soft- controlled aspects of the systems has lagged
ware in order to insure and verify that the behind the development of the systems.
software design takes positive measures to
enhance system safety and that errors which Traditionally, in safety analyses, the computer

could reduce system safety have been eliminated subsystem and the software it contains have
or controlled to an acceptable level of risk. been considered a *black box* that gives a

specific output based on a given input and has

3.29 Software Safety Analysis. A hazard not been considered in the safety analysis

evaluation technique which identifies software process. However, as the use of software-

commands (with and without errors) either sin- controlled systems has grown, so has the inci-
gularly or In combination with hardware dence of mishaps directly attributable to

I

4 AFISC SSH 1-1 5 September 1985

software increased. It has become very appar- incorrect or incomplete designs, or (b) soft-

ent that software can no longer be ignored from ware errors made during programming or coding.

a safety standpoint. A third failure class Is hardware related;

software errors occur due to a hardware-induced
4.1 THE SOFTWARE HAZARD corruption of the program. Software changes due

to the effects of radiation bombardment of RAM

It is well understood that software in and of fall Into this category.
Itself is not intrinsically hazardous; however,
once the software is associated with a system, The fact that software does not fail does not

it becomes as potentially hazardous as the make the issue of safety analysis easier. In

total system. For a hazard to occur, there theory, a properly designed testing program

must be some undesired/uncontrolled release of could detect all errors. In practice, however,

energy, energy normally contained by some this becomes virtually impossible due to the

hardware component(s). The failure, malfunc- many possible combinations of sequences and the

tion, or error in control of that hardware must timing of those sequences with respect to one

cause or allow the hazard to occur; therefore, another. Further, modern software testing

normally only software which exercise direct includes time compression techniques which

comand and control over the condition or tend to make error windows so small that the

state of the hardware components or can monitor window may not be hit and the errors, there-

the state of the hardware components are con- fore, undetected. Additionally, as tests tend

sidered critical from a safety viewpoint, to reflect the requirements to which the soft-

Software which controls and monitors systems, ware was written, errors in the requirements

such as missiles or aircraft, are considered are seldom detected by testing.
to be hazardous. However, other systems that
provide indirect control or data for critical In the past short history of software devel-

processes, such as the attack warning system opment, much of the testing or debugging has

at NORAD or flight navigation systems, must been accomplished by trial and error. When an

also be considered as hazardous, as erroneous error was detected, the software code was ana-

data can lead to potentially hazardous erro- lyzed and a change was made. This process took

neous decisions by the human operators or com- time, and latent software errors often lay

panion systems. unnoticed during development only to appear

after the product had been fielded. Modern

Software hazards fall into four broad catego- weapon systems cannot afford to be programmed

ries: (a) inadvertent/unauthorized event, an by such methods, as latent errors can lead to

unexpected/unwanted event occurs; (b) out-of- system destruction.

,sequence event, a known and planned event
occurs but not when desired; (c) failure of 4.2 MANAGEMENT CONSIDERATIONS
event to occur, a planned event do~s not occur

(e.g., a hazard is allowed to propagate because Software safety, which is a subset of system

the program does not detect the occurrence of safety, is a relatively new field and is going

the hazard or fails to act); (d) magnitude or to require a conscientious effort by all those

direction of event is wrong, this is normally involved in any system acquisition process or

indicative of an algorithm error, development effort to insure it is adequately

addressed during system development. Hardware

Traditionally, the failure of the computer has and software engineering efforts must be

been viewed only from a standpoint of elect- accomplished as a team effort. Engineers must

ronic component failures in reliability and attend their counterpart's specification and

safety analyses. The electronics can be ana- design reviews so that they are fully aware of

lyzed and mean time between failures (MTBF) hardware/software and other interfaces and how

assigned. However, an MTBF cannot be directly each of their efforts are interdependent and

applied to software as software does not fal. how they jointly affect safety. System safety

The 'software failures' are actually errors personnel must have (or have access to) the

built into the program. These errors fall Into appropriate hardware and software expertise

two main classes: (a) Incorrect or incomplete and must also always maintain a 'total systems"

specifications and requirements which leads to viewpoint.

AFISC SSH 1-1 5 September 1985 5

A special effort must be made to Insure that TABLE 5.1. APPLICABLE DOCUMENTATION
appropriate requirements are transmitted to the
contractors. A good up-front effort to define a DOCUENT NUMBER DOCUMENT NAME
system safety theme and insure that proper
safety requirements are contained in requests MIL-STD-882 System Safety Program
for proposals (RFPs) and specifications will Requirements
save time, money, and possibly lives over the
system lifetime. Just as a good system safety MIL-STO-483 Configuration Management
program needs to begin when a project is Practices for Systems,
started, so must the efforts to insure software Equipment, Munitions, and
safety. Specific up-front requirements imposed Computer Programs
upon the software development effort will help
insure that safety is designed into the soft- MIL-STO-49O Specification Practices
ware and that the required safety analyses can
be easily and inexpensively accomplished. DOD-STO-1679 Software Development

Standard
5. DESIGN GUIDELINES FOR SOFTWARE SYSTEM
SAFETY DOO-STD-480 Configuration Control -

Engineering Changes,
5.1 SYSTEM CONSIDERATIONS Deviations and Waivers

The foremost factor in insuring system safety AFR 122-10 Nuclear Safety Design and
is to insure that the entire system be looked (if applicable) Evaluation Criteria
at as a system, not separate hardware and soft-
ware elements. At the very Inception of a sys- 5.2 HARDWARE CONSIDERATIONS FOR SOFTWARE
tam development effort, a system safety theme SAFETY
needs to be identified which will specify how
fault tolerant the system must be and how the If software has anything which even resembles a
system is to handle faults; i.e., must the failure mode, it is in the area of hardware-
system work at least at some level of operation Induced failures. Just as when a hardware
or, given a certain class of fault must the component fails and causes other component or
system shut itself down or initiate some spe- system failures, the same effect also applies
cific procedure? This theme will then serve as to software. A hardware failure can cause a
a general guide as to hardware and software bit error in a computer word which Induces a
design requirements and Is one of the first software failure because the software instruc-
steps in specifying system safety requirements. tion no longer has its original maning. The

failure mechanism Is entirely within the hard-
The next step is to Insure that appropriate ware, but the software is erroneous because it
requirements are included in the RFPs, state- has a new and unintended meaning. These fail-
ments of work, contracts, and the system and ures may be permanent or a temporary glitch due
subsystem specifications. In addition to the to effects such as alpha particle radiation.
system specific requirements, the following Hardware design and software should attempt to
documents of the issue In effect as of the date take these problems into account and provide a
of the contract should be Included In contract method of flagging them and reducing their
requirements: effect (e.g., parity check on memory data and

6 AFISC SSH 1-1 5 September 1985

software commands prior to acceptance). It Safety critical functions and elements must be
'nould be noted that a BIT will probably not identified early and appropriate safety design
catch a soft error (glitch). Also, hardware criteria provided for them in the specifica-
sensor failures can provide erroneous inputs. tions. These criteria should include possible
When operated on by the software, erroneous methods for risk avoidance (e.g., safety kernel
Judgements are made, resulting in improper techniques or the use of safety assertions) and
commands being issued. Again, the failure possibly an ordered precedence of various
mechanism is entirely in the hardware, but the methodologies (e.g., program design inhibits,
software outputs are erroneous and defeat interlocks, hardware configuration, or opera-
proper system operation. Therefore, credible tional plans and procedures). Additionally,
hardware failure modes must drive design requirements for entrancy/reentrancy con-
requirements, both of the hardware and of the straints, output monitoring, and hardware
software. status checking must be specified and the

requirement for testing/analysis called out.

5.3 REQUIREMENTS FOR THE VARIOUS PHASES OF The two greatest difficulties encountered at
SYSTEM DEVELOPMENT this stage of development are that many of the

actual requirements are not known and that
5.3.1 Specification Phase system/subsystem interfaces are not accurately

described or understood. Compounding these
The development of system and subsystem speci- difficulties are system designs which push the
fications is one of the most crucial activities state-of-the-art on one or more technological
during a system development effort. This is fronts. To help overcome these difficulties,
especially true for system safety and specif- one of the best tools available is "history!"
ically for software safety. Without appropri- Similar programs or activities should be
ate and adequate safety requirements in the actively reviewed to glean lessons learned
development specifications, software may nel- data. From a generic basis, the following have
ther provide the desired degree of safety nor already proven to be safety concerns:
even be analyzable. In general, the software
must be designed to an acceptable level of a. Routines which disable interrupts
risk, given that failures, errors, and adverse should be considered safety critical.
environmental conditions will occur. This
requires that a general software safety phi- b. Conditional statements must be reviewed
losophy be decided early in the program and be to insure that conditions are correctly stated
so stated in the requirements documents. Also, and that the conditions can and will be appro-
to help insure that developed programs are priately met (e.g., conditions that call for an
analyzable, OOD-STD-1679, O Software Develop- exact match of floating point numbers can
ment Standard, or similar structured program- easily result in an infinite loop).
ing requirements should be levied upon the
contract. c. What conditions can result in a divide

by zero or what are the effects of other analo-
The safety effort must begin by defining both gous singularities in the program? Not only
general and specific safety requirements for can a divisor of zero cause this problem but
the top-level system specifications. These also "very small' numbers may be truncated to a
requirements must then be flowed down to the zero by the software.
lower-tiered specifications. As this flowdown
process takes place, there must be increased d. Priority of fault detection and safing/
attention placed on the specific safety correction logic vs normal processing *in line*
functional requirements of the individual sub- logic.
systems. For instance, hazards identified in
the preliminary hazard analysis may drive e. Can the system and routines handle the
specific requirements for inclusion in a com- amount and frequency (load) of data? Addition-
puter program configuration item (or even how a ally, is the precision and scaling of data

particular problem must be solved in rare appropriate and what conditions could cause a
cases). hazardous condition?

AFISC SSH 1-1 5 September 1985 7

f. With systems utilizing technologically Safety personnel will continue the software
advanced ideas, IR&D and proof-of-design labo- safety analysis by examining the source/target
ratory demonstration hardware figures heavily machine executable code of safety critical
in the proposed developmental design. Conse- elements and insuring the independence of these
quently, basic building block safety provisions modules from noncritical elements. These pev-
must be pressed into such laboratory/ sonnel will also ascertain that the program
exploratory designs, even though "system" performs its intended functions correctly, and
safety at that point has little meaning. that it does not perform any unintended func-

tions (e.g., no extraneous code). Independent
5.3.2 Design Phase testing of segments of code must be completed

prior to the segment being incorporated into
Once the specifications have been written, the the main code package.
next task is to translate those requirements
into an actual design. It Is important to again 5.3.4 Testing Phase
stress that safety is the joint responsibility
of all those concerned on a development effort. From a safety viewpoint, complete and thorf.ugh
Engineering must translate specification safety testing of a system may neither practical rvr
requirements into the actual design, and with desirable due to the costs and/or resources

the quality and safety offices, insure the involved. However, testing must show that all
accuracy of algorithms, interfaces, and other hazards that have been identified have been
requirements that could affect system safety. either eliminated or controlled to an accept-
The selected safety philosophy, as well as able level of risk. Safety testing must verify
structured programing techniques, should be that not only will the system function normally
strictly adhered to. Software critical items within specified environments but also test
(see PHA) shall follow modular design tech- for reaction to failures and boundary condi-
niques and shall be separated from and not be tions and abnormal/out-of-bound environmentE
intertwined within non-critical items. (e.g., 'negative' 'what-if' testing). Safety

inhibits, traps, interlocks, assertions, etc.,

The software hazard analysis effort (described must be verified by test or simulation. It is
in section 6) should begin early during soft- vital that all code within the program be exe-
ware development by analyzing the various pro- cuted at least once and each decision brought
gram design documents, such as flowcharts, to each of its possible outcomes at least once,
program structure documents, etc., for compli- although no necessarily in every combination.

ance with safety requirements and to identify
potentially hazardous conditions. It is impor- Depending upon the type and importance of the
tant to stress that the software cannot be system, independent safety and verification ana
looked at in a vacuum. It is just one part of validation should be considered.
the overall system, and a mishap can occur when
it directly or indirectly influences a hazard- 5.3.5 Deployment/Operational/Maintenance Phase
ous system action or activity. Closely related
to the safety analysis effort is the need for a Software safety does not terminate with the

strong configuration control program which will deployment of a system. All complex software
identify changes to critical software elements programs have "bugs", many of which are not
which have been previously examined, found until after the system becomes opera-

tional. The way in which those bugs are fixed
5.3.3 Coding Phase determines whether or not the software is or

remains "safe". The single most dangerous act

As during the previous design phase, system in software maintenance is to allow a machine

safety is the responsibility of all concerned language patch to a single module without car.<
with the design process. The coding effort must fully analyzing the impact of that change to

be reviewed by software-knowledgeable quality the rest of the software. Sometimes a seen-

assurance personnel through code walk-throughs, ingly innocuous change can cause system wide
and other method to insure accuracy, compli- devastation. All changes, not just those to

ance with software engineering and safety safety critical code, should be reviewed for

design requirements, and to identify errors, impact to the safety of the overall system.

8 AFISC SSH 1-1 5 September 1985

C inges to baselined software documentation and the right modifications, or that has not been
,)des are normally controlled, processed, and already modified? Software changes may not be

implemented in accordance with a software con- readily apparent above the code level. This Is
figuration management system. Software safety especially important if the change is issued as
needs to ensure that special emphasis is given a partial set of RONs, and does not involve a
to the safety aspects of changes that are han- complete swap out. If several modifications
dled in such a manner. In order to carry out are/have been made to the software in this
this effort, all changes to previously analyzed fashion, sooner or later one modification wil
specifications, requirements, designs, codes, be made before the previously issued one (or
and test plans, procedures, cases, or criteria one will make it through the paperwork before
are subjected to a software hazard analysis. the other). Since all software depends on all

of the other software in a system, this can
The beginning point of this change hazard have disastrous effects.
analysis will depend upon the highest level
within the documentation that is affected by Some good rules for software field maintenance
the changed being proposed. For example, when include the following:
the change affects the Software Top Level
Design Document, the analysis of the change a. Whenever possible, issue firmware
begins with the top-level design analysis soft- changes as fully populated and tested circuit
ware safety tasks defined earlier. Appropriate cards.
subtasks under that analysis and all subsequent
analysis subtasks should be performed until b. If fully populated cards cannot be
either: issued, then issue complete RON sets, numbered

and/or color coded. Analyze the software for
a. All appropriate subtasks have been the effects of improper insertion (one or more

completed, or swaps), and provide a method for field
verification of proper insertion (BIT or ,

b. It is determined that the change nei- checksum).
ther creates a new hazard nor Impacts on one
which has already been resolved. C. If a complete set of ROs cannot be

issued, then ensure that no safety critical
code modules cross the address space between

There are also software safety considerations old and new ROls. That is, the safety critical
regarding the installation of firmware changes code should be entirely contained in the new
during these phases. When the software for a firmware or in the old firmware. There should
system is contained In firmware (ROs), and bo no cases in which part of a safety critical
changes for the software are fielded as new module Is in the old firmware and part is in
ROMs, consideration must be given to ensuring the new firmware. Field verification of the
that the ROls are inserted properly, and in the proper installation and integrity of the
correct order. Even when the firmware Is dis- complete system software is essential. Make
tributed as full occupied circuit cards, con- sure that the difference between subsequent
sideration must be given as to whether multiple modifications can be detected by BIT or
cards can be swapped, or whether a card can be checksum.
Inserted backwards. If the software Is dis-
tributed as magnetic media (tapes, disks, d. If the changes are issued as magnetic
floppies, etc.), extra consideration must be media, include an automatic patching utility
given to the proper installation. which checks to ensure that it is patching the

proper revision level of the software, and
Besides just proper physical installation, which then changes the revision level of the
there also must be a method of verifying that installed software.
the changes are being made on a system at the
intended modification level. If other modifi- e. If, as a last resort, or if the changes
cations are/have been issued, how does the are very minor, the software is Issued as writ-
field unit ensure that the software changes ten instructions, they should be inserted using
being inserted are made to a system that has a checksum verification utility.

AFISC SSH 1-1 5 S.-'ember 1985 9

6. SOFTWARE SAFETY ANALYSIS d. Functional flow diagrams and related
data.

6.1 PRE.IMINARY AND FOLLOW-ON SOFTWARE HAZARD
ANAL',.a e. Flow charts or their functional

equivalent.
Software hazard analysis is accomplished so
that the total system will operate at an f. Storage allocation and program struc-
acceptable level of risk. To be effective, ture documents.
analysis must be started early enough to
actively influence the design of both the soft- g. Background Information related to
ware and the total system. The analysis effort safety requirements associated with the corte.
ts started when the system allocation process plated testing, manufacturing, storage, repair,
has delineated the responsibilities between the and use.
hardware and software. The software hazard
analysis must be structured to permit continual h. System energy, toxic and haz~rduu-
revision and updating as system and software event sources which are controlled or influ-
design matures. enced by software.

6.1.1 Preliminary Software Hazard Analysis
6.1.2 Follow-on Software Hazard Analysis

The preliminary software hazard analysis is a
direct offshoot of the system preliminary haz- The follow-on software hazard analysis is a
ard analysis (PHA). As it is normally cost continuation of the preliminary software hazard
prohibitive to analyze all system software to analysis and begins when coding of the software
the same depth, the system PHA, when integrated begins, normally following the critical design
with the requirements levied upon the software, review (CDR). Those software elements that
will identify those programs, routines, or have been previously identified as being safety
modules that are critical to system safety and critical shall be analyzed at the source/
must be examined indepth. These software ale- machine executable code level. The level of
ments shall be identified as safety critical, effort required depends on the perceived risks.
However, all software must be analyzed at least In certain instances, if the source code is
to the extent necessary to determine any impact written in a high order language and there is a
or influence upon the safety critical code. high level of system risk involved, the run
All programs, routines, modules, tables, or time object code should be analyzed to insure
variables which control or directly/Indirectly that the compilation or interpretation process
influence the safety critical code shall also has not introduced any hazards or negated any
be classified as safety critical. Additionally, safety design efforts.
some or all of the software tools (e.g., com-
pilers, support software, etc.) may also have Additional activities that occur during the
to be designated as "critica1". All safety follow-on analysis include a review of all
critical software elements will be analyzed to hardware/software, software/software, a-id
the source/object code level by the follow-on software/operator interfaces and of critical
software hazard analysis. data (e.g. files, etc.). Analysis is accom-

plished on all algorithms, and calculations for
The preliminary software hazard analysis Is correctness and input/output/timing sensitlv-
accomplished by analyzing the following ity. While some of these activities may flil
documents: under the purview of QA and/or reliability,

those elements affecting safety critical tle-
a. System and subsystem preliminary hazard ments must be reviewed by syst cm s-fe'v.

analyses Also, system safety must continue its active
monitoring of the design and coding effort,

b. System and subsystem specifications, with special attention being placed on des iyi /
program changes. When a program is submitted

C. System allocation and interface for analysis, it shoulo also be placed unde-
documents. in-house configuration concrol so that the

10 AFISC SSH 1-1 5 September 1985

ana.lysis report will reflect a known program only those faults that contribute to
version, and if changes are made, safety will this top event. Moreover, these faults
know of the changes, are not exhaustive--they cover only the

most credible faults as assessed by the
analyst.

7. SOFTWARE HAZARD ANALYSIS METHODOLOGIES
It is also important to point out that a

Although not an exhaustive list, the following fault tree is not in itself a quantita-
techniques can be used to help provide a thor- tive model. It Is a qualitative model
ough software hazard analysis. Additionally, a that can be evaluated quantitatively and
thorough software hazard analysis of a system often is. This qualitative aspect, of
may require application of more than one of the course, is true of virtually all varie-
following techniques or others not yet identi- ties of system models. The fact that a
fled in this document. fault tree is a particularly convenient

model to quantify Ooes not change the
qualitativ, nature of the model

7.1 SOFTWARE FAULT TREE (SOFT TREE) itself."

Before the topic of the software fault tree can
be discussed, a brief description of fault 7.1.1 The Soft Tree
trees in general is needed. The following three
paragraphs are taken from the US Nuclear The term soft tree has been coined to describe
Regulatory Commission NUREG-0492, "Fault Tree a fault tree which includes software inter-
Handbook,' January 1981: facing with hardware. The software fault tree

proceeds in a manner similar to hardware fault
*The fault tree analysis can be simply tree analysis and uses a subset of the symbols
described as an analytical technique, currently in use in the hardware counterparts.
whereby an undesired state of the system Thus, hardware and software trees can be linked
is specified (usually a state that is together at their interfaces to allow the
critical from a safety standpoint), and entire system to be analyzed. This is extremely
the system is then analyzed in the con- important since software safety procedures
text of its environment and operation to cannot be developed in a vacuum but must be
find all credible ways In which the considered as part of the overall system
undesired event can occur. The fault tree safety. For example, a particular software
itself is a graphic model of the various error may cause a mishap only if there is a
parallel and sequential combinations of simultaneous human and/or hardware failure.
faults (or system states) that will Alternatively, the environmental failure may
result in the occurrence of the prede- cause the software error to manifest itself.
fined undesired event. The faults can be The soft tree also can help identify credible
events that are associated with component fault modes within the computer system, such
hardware failures, human errors, or any as flag or register failures, which will cause
other pertinent events which can lead to the software to act in an undesired manner.
the undesired event. A fault tree thus
depicts the logical Interrelationships of The first step in the software fault tree is
basic events that lead to the undesired conducting a PHA analysis to identify and cate-
event--which is the top event of the gorize the hazards posed by the system.
fault tree. Classifications range from "catastrophic" to

'negligible.' Once the hazards have been
It is important to understand that a determined, fault tree analysis proceeds. It
fault tree is not a model of all possible should be noted that In a complex system, it is
system failures or all possible causes likely that not all hazards can be predeter-
for system failure. A fault tree is mined. This fact does not decrease the neces-
tailored to its top event which corre- sity nf identifying as many hazards as possible
sponds to some particular system failure but does imply that additional procedures may
mode, and the fault tree thus Includes be necessary to insure system safety.

AFISC SSH 1-1 5 September 1985 11

The goal of software fault tree analysis is to OR gate with at least two inputs: (I) carry
show that the logic contained in the software occurred due to some calculation, and (2)
design will not produce system safety failures, carry flag bit failed high. Again, the final
A further goal is to determine environmental goal of the analysis is total system safety.
conditions which could lead to these software and this will require that the analysis be
induced failures. The basic procedure is to done by persons knowledgeable of the computer
assume that the software will lead to a catas- equipment and languages being used. As with any
trophe and then to work backward to determine fault tree, the safety engineer must know the
the set of possible causes for the condition to system he has to analyze and make every attempt
occur. to model the system accurately.

The root of the fault tree is the event to be As a final note, to facilitate this analysis,
analyzed, i.e., the *loss event.' Necessary as well as system safety, software should be
preconditions are described at the next level developed such that the majority of the safety
of the tree with either an AND or an OR rela- critical functions, decisions, and algorithms
tionship. Each subnode is expanded In a similar are within a single (or few) software devel-
fashion until all leaves describe events of opment modules. This, as well as a structure,
calculable probability or are unable to be approach that protects against inadvertent
analyzed for some reason. Further information jumps, etc., will significantly reduce the
on the general construction of fault trees can scope of work that is needed on a given tree as
be found in NUREG-0492 and specific information the tree will only need to extend down to the
on soft trees can be found in "SOFT TREE, Fault code level for only extremely critical parts of
Tree Techniques as Applied to $oftware" by the the software.
Directorate of Systems Safety, Armament Divi-
sion, Air Force Systems Command, Eglin Air 7.1.2 Uses of Fault Trees0Force Base. 7.1.2.1 Cutset Analysis

Soft tree/fault tree analysis can be used at
various levels and stages of software/ system Boolean (i.e., logic or circuit) algebra may be
development and the level of node development applied to the fault tree to find the minimum
can also be tailored depending upon how the cutsets, which are all combinations of basic
tree is to be used and the corresponding stage events (component-level and often quantifiable
of software/system design. Thus, the analysis events) which will cause the top event. The
can proceed and be viewed at various levels of algebra removes the intermediate logical inter-
abstraction from trees derived from program relationship levels of the tree, converting the
flows or a program design language (POL) to tree to an equivalent form which is in terms of
final trees whose nodes are at the code level, basic events only.
It is, therefore, desireable to build the ini-
tial trees early during the software life cycle The cutsets show which single-point failures,
so that safety can be designed into the soft- double-point failures, and higher-order fail-
ware during its development. (Software fault ures are possible and which lead to occurrence
trees can also utilize the network tree data of the top event. The number of events in each
base generated during a software sneak cutset shows the amount of inhibits, in differ-
analysis.) ent combinations, on the occurrence of the top

event.
When working at the code level, the starting
place for the analysis is the code responsible Cutset analysis computer programs are avail-
for the output. The analysis then proceeds able, such as FTAP, SETS, PREP, ALLCUTS, and
backward deducing both how the program got to ELRAFT.
this part of the code and determining the cur-
rent values of the variables. It Is at this 7.1.3.2 Quantitative Analysis
level that processor and computer faults can
also be identified. For example, a soft tree If component failure rates and hazard ou ation
event could read *carry flag set.' The input times are available for each basic event, a
to this event, as a minimum, should include an probability of the top event may be calculated.

12 AFISC SSH 1-1 5 September 1985

Convzrsely, given a desired probability of the Software sneak analysis: Data used for software
to, event, allowable time for operation of the sneak analysis should reflect the program as it
system my be calculated, is actually written. This includes system

requirements, system description, coding speci-
In addition, basic events or cutsets may be fications, detailcd and complete source code, d
ranked quantitatively as to their relative compilation listing, and operating system docu-
importance to the top event. mentation. All records are written against

these documents.
This quantitative analysis of the fault trees
is traditionally a hardware analysis technique Software Sneak Analysis is used to discover
where a 'component" is easily defined. Experi- program logic which causes undesired program
mental attempts are being made to define soft- outputs or inhibits a desired output. The tech-
ware components and to determine failure rates nique involves the reduction of the program
for these. source code to topological network tree repre-

sentations of the program logic.
Computer programs are available for quantita-
tive analysis, including IMPORTANCE, BACSIM, Direct analysis of program listings is diffi-
KITT. SAMPLE, MOCARS. and FRANTIC. cult because the system is modular for ease of

programing. Also, the code is listed as a file
7.1.2.3 Common Cause Analysis or record, without regard to functional flow.

The first task of the software sneak analyst
Common cause analysis deals with dependencies Is to convert the program source code into a
between events in a cutset. For example, a form usable for analysis. In most cases, this
cutset may contain three events, "transistor X step requires computer conversion. In either
shorts,' 'transistor Y shorts,' and 'transistor case, the program source code is converted with
Z shorts.' If all three events occur, the top reference to an input language description
event will occur (the system will fail). If file into topological network trees such that
all three events can be triggered by an exter- program control is considered to flow down the
nal comon cause, such as heat, and if heat is page.
present, the system will fail.

Once the trees have been drawn, the analyst
In the case of software, common cause analysis identifies the basic topological patterns that
can be applied to cutsets to determine environ- appear in the trees. Six basic patterns exist:
mental effects on top events. For example, if the single line, the return dome, the
the contents of two registers are thought to be Iteration/loop circuit, the parallel line, the
affected by a certain environment, and both are entry dome, and the trap circuit, as shown
in the save cutset, the cutset is a more Impor- below:
tant possible system failure mode when that
environment is present.

Computer programs, such as CONCAN, BACKFIRE,
and SETS, are available to aid in the sorting o I o
of events in cutsets to locate common I \
susceptibilities. a I o

7.2 SOFTWARE SNEAK CIRCUIT ANALYSIS Single Line Return Dome Iteration Loop

Five specific software analysis techniques are
described in the material that follows. The L2 I II
techniques are basically static analyses. Some T
of the information on analysis techniques other o I o I
than software sneak analysis has been obtained /1
from 'Checkout Techniques, Software Reliabil-

ity Guidebook,' Prentice-Hall, 1979; Robert L. /
Glass. Parallel Line Entry Dome -Tip

AFISC SSH 1-1 5 September 1985 13

In a system level analysts, code is modelled in Software sneaks are classified into four basic
terms of Impedances, powers, grounds, switches, types:
nodes, and relay coils and switches. Trees are
constructed hierarchally, so that the analysis a. Sneak output - the occurrence of an
proceeds from the top down. In a system level undesired output.
analysis, the following topographs are identi-
fied: b. Sneak Inhibit - the undesired inhibi-

tion of an output.

-- I c. Sneak timing - the occurrence of an
undesired output by virtue of its timing or

o 1 o mismatched input timing.

I I o o
X / d. Sneak message - the program message
X / does not adequately reflect the condition.
\ /

\ I When potential sneak is identified, the analyst
4must verify that it is valid. The code is

checked against the latest listing. Compiler
Unit Binary Multiplexer Loop information my be reviewed concerning the

language in question. If the sneak is veri-
fied, a software sneak report (SSR) is written

L.. J ., which includes an explanation, system-level
impact, and a recommendation for elimination of

jthe sneak.

o I o 0 o 0 During the course of analysis, questionable

0 0 programing practice or instruction implementa-

10 10 tions my be encountered and are reported in a
\ \ / / software design concern report (S0CR).

F f If two or more documents or the program listing
4and a supporting document do not agree, the

program listing is assumed to be correct. If
Binary Rotary Rotary the analyst then determines that the condition

Decoder Multiplexer Decoder is not a software sneak or questionable prac-
tice, a software documentation error report
(SOER) is Issued for the discrepancy.

Although at first glance a given software tree
may appear to be more complex than these basic The following paragraphs describe various meth-
patterns, closer inspection will reveal that ods of analysis used in the software analysis:
the code is actually composed of these basic
structures In combination. As each node in the a. Desk checking. Desk checking is one of
tree is examined, the analyst must identify the earliest forms of software verification.
which pattern or patterns include that mode. It involves:
The analyst then applies the topograph specific
clues that have been found to typify the sneaks (1) Reviewing a program listing for
involved with that particular structure. These faults and compliance to requirements,
clues are In the form of questions that the
analyst must answer about the use and inter- (2) Performing arithmetic calculations
relationships of the instructions that are to verify output value correctness, and
elements of the structure. These questions are
designed to aid In the identification of the (3) Manually simulating program execu-
sneak conditions in the instruction set which tion In order to understand and verify program
could produce undesired program outputs. logic and data flow.

14 AFISC SSH 1-1 5 September 1985

Since desk checking is such an ill-defined or its design to show that it is consistent 0
cJncept, it is difficult to provide a cost with its specification. This is done by
estimate for its use. It is undoubtedly true, breaking the program into logical segments,
however, that moderate amounts of desk checking defining input and output assertions for each
save more money than they generate In cost. segment, and demonstrating that, when the pro-

gram functions, if all input assertions are
Desk checking efforts concentrate on areas of true, then so too are all output assertions. It
special problems, especially suspected errors must also be shown that the program success-
or code inefficiencies, and involve techniques fully terminates.
appropriate to that problem.

Many researchers are currently working in the
b. Code Walk-through. Code walk-through proof-of-correctness area. Small algorithms

is a process by which a team of programing and programs have been proven In this environ-
personnel (i.e., technologists) do an indepth ment; however, it has yet to be demonstrated on
review of a program, or portion of a program, programs of any significant size.
by inspection. In general, the participants
are verbally lead sequentially through the Even for small simple programs, the symbolic
logic flow of the program as represented in manipulations Involved in the proof-of-
the listing. (Note: the leader should not be correctness technique can be overly complex,
the responsible programmer) All logic branches introducing errors into the computation of the
should be taken at least once. The function of statements to be proven as well as the proof of
each statement will be discussed as it is those statements. Thus, the technique would be
encountered. Program requirements and design most successful on highly mathematical and
specifications will be present for correlation relatively straightforward program segments.
of function to Its driving factors.

Lack of practical experience with proof of
The walk-through should not occur until after correctness makes it difficult to quantify
coding of the program to be reviewed is com- costs. Usage costs are significant, possibly
pleted, well annotated, and syntactically adding 100 to 500 percent to the cost of the
correct, portion of the software being proven. However,

by lowering the projected mishap number, the
c. Structural analysis. A structural ana- life cycle cost of the system could be substan-

lyzer is an automated tool that seeks and tially reduced.
records errors in the structural makeup of a
computer program undergoing analysis. Struc- Specification requirement for sneak analysis:
tural analysis is a relatively new concept, The sneak analysis specifications are currently
beginning in the early 1970s. Structural analy- listed In f0IL-STD-785B, Reliability Program
zers are almost always language and Installa- for Systems and Equipment Development and
tion or project specific. Most structural Production.
analyzers built to date accommodate only FOR-
TRAN or COBOL. For example, DAVE, built at the 7.3 NUCLEAR SAFETY CROSS-CHECK ANALYSIS
University of Colorado, processes COC-6000 (NSCCA)
FORTRAN programs looking for uninitialized
variables via a very elaborate algorithm. NSCCA is a rigorous methodology developed

exclusively to satisfy the requirements of Air
The major factor in the cost of a structural Force Rogulation 122-9 and is accomplished by
analysis is the acquisition of a structural an agency or contractor who Is independent
analyzer. Costs can range from trivial, if the from the program developer. (Some names of
program is already in the public domain, to activities and plans vary depending upon the
upwards of $100,000 for implementation of an branch of service but the intent remains the
elaborate analytical tool. same) The methodology, to a great degree, is an

adversarial approach to software analysis in
d. Proof of correctness. Proof of correct- that its basic objective is to show, with a

ness is the process of using mathematical high digree of confidence, that the software
theorem-proving concepts on a computer program will not contribute to an undesirable event.

AFISC SSH 1-1 5 September 1985 15

The NSCCA process has two components: technical b. Prevent deliberate prearming, arming,
and procedural. The technical component evalu- launching, firing, or releasing of nuclear
ates the software by analysts and test to weapons, except upon execution of emergency war
assure that it satisfies the system's nuclear orders or when directed by competent authority.
safety objectives. The procedural component
implements security and control measures to c. Prevent inadvertent prearming, arming,
protect against sabotage, collusion, compro- launching, firing, or releasing of nuclear
mise, or alteration of critical software con- weapons.
ponents, tools, and NSCCA results. (Note:
While this method was originally designed to d. Insure adequate security of nuclear
meet the needs of nuclear systems, the method weapons.
can be tailored and applied where ever
desired.) These four DOD safety standards define the

undesirable events, detonation, pre.r;idv,
arming, launching, firing, releasing, and loss

7.3.1 Technical Component of NSCCA which are to be protected against. The fourth
standard is also satisfied in the procedural

The technical component begins with a criti- component of NSCCA.
cality analysis which maps the nuclear safety
objectives against the discrete functions of AFR 122-10, Nuclear Safety Design and Evalua-
the software system. Qualitative judgments are tion Criteria, breaks down the four DOD stan-
made to assess the degree to which each func- dards into specific requirements which are the
tion affects the nuclear safety objectives, and minimum positive measures necessary to demon-
suggestions for the best methods to measure the strate that nuclear weapon system software is
software functions are made. The program man- predictably safe. The combination of OD safety
ager uses the criticality assessment to decide standards and the design criteria form the
where best to allocate resources to met the menu of NSO.
requirements, then the NSCCA program plan is
drawn. The program plan establishes the tools 7.3.1.2 Functional Breakdown of the System
and facilities requirements, analyses require- Software
ments, test requirements, test planning, and
test procedures. This family of documents Step two of the criticality analysis is to
establishes In advance the evaluation crite- break down the total software system into the
rna, purpose and objectives, and expected lowest order of discrete functions or modules.
results for specific NSCCA analyses and tests. It is intuitively obvious that the more modular
Establishing these details beforehand promotes a system is the more easily analyzable it be-
the independence of NSCCA and avoids "rubber- comes. Once the system is broken down to the
stamping." lowest order of function, each function is

analyzed to determine the degree to which it

operates on or controls a nuclear critical
7.3.1.1 Derivation of Nuclear Safety Objec- event (i.e., prearming, arming, etc.). Modules
tives (NSO) which have no Influence on the nuclear critical

events are not included for further analysis.
The first step in criticality analysis Is deri- A matrix Is then prepared plotting software
vation of the NSO. NSOs are derived from 000 modules against the NSO and an Influence rat-
Directive 5030/15 and AFR 122-10. OD 5030/15 ing given (high - h, medium - m, low - 1).
directs that, for nuclear weapons systems, Also prospective evaluation techniques are
positive measures be taken to: shown. With the criticality analysis in hand,

program management can determine the best
a. Prevent nuclear weapons Involved in course of action to pursue the NSCCA.

accidents or incidents from producing a Figure 7.3.1 shows an example of a criticality
nuclear yield. analysis.

16 AFISC SSH 1-1 5 September 1985

7.3.1.3.4 NSCCA Test Plan
Software Evaluation Method
Modules/ 1 2. 1. n Exam Test Demo The test plan identifies the scope of testing
Data to be applied to each nuclear critical perfor-
F1 h 1 m X X mance requirement Identified in test require-
F2 m I s X ments. The scope of each test is defined by
• establishing an analysis or test scenario for
* each requirement.

Fl 1 h m 1 X X

7.3.1.3.5 NSCCA Test Procedures
Fn m I X K

The test procedures identify how the scope of

testing described In the test plan will be
Figure 7.3.1 achieved. For each test scenario, detailed

procedures are developed specifying the input,

7.3.1.3 Conduct of the NSCCA tool(s), and expected output from the test.
The test procedures begin after completion of

7.3.1.3.1 NSCCA Program Plan the test plan and after review of the detailed
program design and coding. As errors or defi-

The program plan identifies detailed NSCCA ciencies are detected in the program source
activities and schedules compatible with the code, specifications, interface documents, data
software development contractor's schedule of base description documents, or other design
reviews and delivery dates. The plan also con- related documents, they are recorded on dis-
tains man-loading estimates for each activity. crepancy reports.

7.3.1.3.2 NSCCA Tools/Facilities Plan 7.3.1.3.6 NSCCA Final Report

The tools/facilities plan identifies software The final report summarizes the NSCCA activi-
tools to be used in each analysis task. All ties and results and presents conclusions and
required tools are described. For new or modi- recommendations regarding program performance
fled tools, It provides schedules for develop- and safety. The final report concludes whether
ment and identifies quality assurance methods the system sufficiently complies with its per-
to be applied to the tool development process. formance and safety requirements to warrant
The plan also describes requirements for test certification for operational use.
facilities and schedules for testing.

7.3.2. Procedural Component of NSCCA
7.3.1.3.3 NSCCA Test Requirements

Nuclear weapons system software subjected to

The test requirements document, which is NSCCA ascends to the Air Force Critical Compo-
derived from the system and software require- nents List end, as such, comes under the provi-
ments specifications, identifies all perfor- sions of AFR 122-4, Nuclear Safety: The Two-Man
mance and safety requirements to be analyzed Concept. The objective of this program is to
and tested. It also identifies requirements protect the software from any environment which
imposed on the test tools in order to properly could subject It to possible compromise or
evaluate system end-item requirements. Test alteration. To establish equal confidence in
requirements are initially derived from speci- the NSCCA, the same level of protection must
fication documents by the criticality analy- apply to the analysis environment. A high level
sis. In addition, hidden safety requirements of confidence is achieved by instituting strong
Implied by the coupling of requirements or personnel, document, and facility security
system constraints are identified and recorded measures, coupled with stringent product con-
for analysis and test. trol procedures.

AFISC SSH 1-1 5 September 1985 17

7.3.2.1 NSCCA Personnel Security During formal NSCCA activities, two-person
control is implemented over all nuclear criti-

Special precautions are taken to insure the cal program materials to prevent their inadver-

trustworthiness of participants and the integ- tent or unauthorized alteration. Critical
rity of results. Special background investi- documentation Items, such as performance speci-
gations are conducted for all project fications, design specifications, interface
personnel who participate in NSCCA activities. control documents, test plans, test procedures,

Each participant in formal NSCCA analyses or as well as controlled software (includes pro-
test will be cleared for SECRET and CNWOI gram source and load tapes, program patches,

before commencing work. In addition, project and qualified software tools), are stored in
engineers will be cleared for TOP SECRET, two-person controlled containers when not in

CONSEC, and cryptographic information. use. An audit scheme is established to pre-
serve two-person control as materials are used.

7.3.2.2 NSCCA Document Security Whenever two-person controlled items are
removed from storage, they are kept under sur-

Each of the completed documents used or pro- veillance by two authorized persons at all
duced during NSCCA is kept under configuration times. All tape or disk manipulations are
control to insure only current data are dis- performed in such a manner that both people can

tributed. Distribution lists are maintained insure that the tape or disk is not altered.
for each document so that all initial recipi- Comparisons and spot checks are performed peri-

ents receive any updates or changes. Master odically to Insure that working copies and
copies of documents are retained in the project controlled copies are identical.
files with classified documents stored in
approved GSA containers. 7.4 SAFETY ANALYSIS USING PETRI NETS

7.3.2.3 NSCCA Test Facility Security 7.4.1 A Petri net (invented by Carl Petri in
1961) Is a mathematical model of a system. One

Rigorous security controls are exercised during of the advantages of Petri nets over other

interim and formal NSCCA testing to maintain models is that the user describes the system
the integrity of machine-readable program code using a graphical notation and thus need not be
and test data and to prevent unauthorized concerned with the mathematical underpinnings

access to classified information. All classi- of Petri nets. Some other potenital advantages
fied code and data are stored on clearly marked of using Petri net models include:
physical media (disks and tapes) which is

secured In GSA-approved containers when not In They can be used early In the development
use. During classified operations, access to cycle so that changes can be made while sill

the facility is restricted to appropriately relatively Inexpensive.
cleared personnel with an established need to
know. Terminals external to the facility are A system approach is possible with Petri nets
physically detached from the computers to pre- since hardware, software, and human behavior
vent unauthorized access to classified infor- can be modeled using the same language.
mation. During formal NSCCA operations,

two-person control restrictions apply to NSCCA Petri nets can be used at various levels of
testing performed in the facility, abstraction.

7.3.2.4 NSCCA Product Control Petri nets provide a modeling language which
can be used for both formal analysis and

Strict configuration management is exercised simulation.
for software items used during interim and
formal NSCCA. This includes successive versions Adding time and probabilities to basic Petri

of the system software, qualified test tools, nets allows incorporation of timing and probab-

prescribed Input data sets, and program ilistic information into the analysis.

patches. Each qualified test tool Is kept under
configuration control so that analysis and The model my be used to analyze the system

test results will be valid and repeatable. for other features besides safety.

18 AFISC SSH 1-1 5 September 1985

Fetri nets have been used primarily to analyze condition holds, it will contain a token. In
performance and 'correctness' (especially with the example in Figure 7.4.2, transition t1
regard to synchronization problems In concur- cannot fire because P1 does not have a token.
rent systems), however, it has been proposed But all the pro-conditions for t2 are currently
that they can be used to analyze system designs true (i.e. P2 and P3), so t 2 can fire. Figure
for safety and fault tolerance. Unlike the 7.4.3 shows the next state of the Petri net.
fault tree, the safety analysis can be accom- When t 2 fires, the tokens are removed from the
plished by a computer without human guidance pre-conditions and a token is deposited in each
because the design is first represented as a of the post-conditions. In the example, the
mathematical system. Furthermore, If a com- only post-condition is PV. Note that it is

plete analysis becomes impractically large, the possible for the same condition to be a pre-
model can be executed on the computer in a condition and a post-condition for a transi-
simulation mode and important information about tion. If a transition has no pro-conditions,
the design derived. For example, faults can be then it can fire at will.
injected and the result examined. Finally,
timing analysis may be more easily accomplished
with a Petri net model than with fault trees. I \ i-*\ I-\ I-\

I P1 I IP2 0 P3 I I F I I'P2 I IP3

F\ \ I \I A Ii' I,-- "-i - 4 - t ,- t

O Figure 7.4.2 Figure 7.4.3Idl
During the execution of the Petri net, the
'state' of the system at any time consists of

Figure 7.4.1 the set of conditions which contain tokens.
Starting from some initial state, the Petri net

In a Petri net, the system is modelled in terms model can be executed showing all the legal
of conditions and events. If certain condi- states (sets of conditions) that the system can
tions hold, then an event or "state transition' "reach.* This information can be depicted
will take place. After the transition, other graphically in a "reachability graph," i.e. a
(or the same) conditions will hold. A condi- graph that shows the possible state sequences
tion (called a 'place' in Petri net terminol- from a given initial state. If the design is
ogy) is represented by a circle 0' and an non-deterministic (i.e. the order of the tran-

event or transition by a bar. An arrow from a sitions or events is not constrained by the
condition (or place) to a transition indicates design), then the graph will have branches for
that the condition is an input (or pre- the different possible ordering of events.
condition) to the transition. Similarly, a Figures 7.4.4 and 7.4.5 show a Petri net and
post-condition Is indicated by an arrow from the corresponding reachability graph for a
the transition to the condition. Figure 7.4.1 simple model of a railroad crossing where the
shows a simple example. It says that If condi- left part of the model Is controlling the
tions A and 8 hold, then the transition can crossing guard gate (which Is on the I
"fire.' After it fires, then conditions 3 and The reachability graph shows that the design Is
C will hold. flawed (from a safety standpoint) since it is

possible for the train to be and the crossing

The Petri net model can be 'executed' to see guard gate to be up at the same time. Note that

how the design will actually work. 'Tokens' it also shows the sequence of events which can

represented by a dot ", are used to indicate lead to this hazard so that appropriate meas-

that a condition is currently true. Thus If a ures can be taken to avoid It.

AFISC SSH 1-1 5 September 1985 19

7 1 r 6 r1 1

' / I
I It

1:
k2 :P~ 3 t t
P 2 \ _ I :9 L - -- - -- -- ~ ~ ~. -7 q I(456811 2 91)C272

PI I

jPj 'lDont t4 t t7

' /MILOADC 891) (3771-)(271

CROSSING
3 BATE

VI10 t7 t3

J,. :t 7 t5

P4 ~ :
I. /COMPUTER 4 461012)

TRAIN
t

P1 * Approach P2 0Before Crossing '
P3 * Within P4 a Past ('P 4611)

Figure 7.4.5. Reachability Graph for
Figure 7.4.4. A Petri Not Graph Figure 7.4.4

20 AFISC SSH 1-1 5 September 1985

0
.though creating the entire reachability graph very high level of abstraction, i.e. only fail-
will show whether the system as designed can ures at the interfaces at the interfaces of the
reach any hazardous states, in practice the software and non-software components may be
graph is often too large to generate com- considered. By working backward to this soft-
pletely. However, it is possible to use the ware interface, it is possible to determine the
same type of backward analysis used in fault software safety requirements and to determine
trees. Algorithms have been developed at the which functions are most critical. Timing has
University of California Irvine to do this been added to Petri net models by putting mini-
backward analysis. Hazards which have been mum and maximum time limits or transitions or
determined by the analysis to be plausible can by putting times on conditions. Either way, it
be eliminated by appropriately altering the is possible to determine worst case timing
design to ensure that paths (sequences of requirements so that, for example, watchdog
events) which will lead to the hazard are not timers can be incorporated into the design if
taken. For example, an Interlock to ensure necessary. Finally, when probabilities are
that one transition or event always preceeds included in the model, minimal cut sets and
another is shown In Figure 7.4.6. Figure 7.4.7 other probabilistic Information is obtainable.
shows the Petri net equivalent of a lockout
(i.e. a design feature that ensures that two Although Petri nets have been used since the
conditions, in this case conditions P3 and P4, 1960's, the application of the technique for
do not hold at the same time), safety Is still experimental (as of 1985) and

has had little real-world validation. However,
it appears to be a promising tool worth further

-\ F\ -\ consideration.S iI I II

8. SOFTWARE SYSTEM SAFETY DESIGN RULES AND
GUIDELINES4r 8.1 This section is designed to act as a guide

II I -in providing safety requirements for system and
I\ /* / \ software specifications. It Is not a defini-
I p3 1 IL L 1 P4 tive list nor can it be applied blindly. The

list should be carefully reviewed and tailored

I T to reflect the specific applications of the
\ \ system(s) under development.I I I I _

\2 8.2 The intent of the the following rules and
quidelines Is to carry out the cardinal safety

/ \/ \ rule and its corollary that no single event or

I I I 1action shall be allowed to initiate a poten-
_/ \/ tially hazardous event and that the system,

upon detection of an unsafe condition or com-
Figure 7.4.6. Figure 7.4.7. mand, shall inhibit the potentially hazardous
Interlock Locking Place event sequence and originate procedures to

bring the system to a predetermined "safe'
state.

Faults and failures can be incorporated Into
the model to determine their effect on the 8.2.1 Documentation of Requirements. Designs,
system. Backward procedures can determine and Intents
which failures and faults are potentially the
most costly and therefore which parts of the 8.2.1.1 All safing requirements shall be
system need to be augmented with fault- detailed in the software design specification.

tolerance and fail-safe mechanisms. Early in
the design of the system, it is possible to 8.2.1.2 The system shall make use of self
treat the software parts of the design at a test, BIT, and fault tolerant concepts.

AFISC SSH 1-1 5 September 1985 21

8.2.1.3 Interrupt priorities and responses single CPU environment, other/dedicated hard-
shall be specifically documented and analyzed ware logic devices shall be AND'ed with the CPU
for safety impact. commands to initiate such a process.

8.2.1.4 Techniques for deadlock prevention/ 8.2.2.2 Critical data communicated between
detection/resolution shall be provided. CPU's shall successfully pass data transmission

verification checks in both CPU's.

8.2.1.5 The intent of the design must be
clearly stated and how it is to be accomplished 8.2.2.3 The results of critical algorithms
In the target code. This includes, but is not shall be verified prior to developmental and
necessarily limited to, absolute/relative time tactical use.
sequence, bit patterns, multiple data checks,
and a priori tasks performed. 8.2.2.4 Critical software design and code

shall be structured to enhance comprehension of
8.2.1.6 Critical software functions must not decision logic.
be corrected by patching In a language other/
lower than the source code designated for that 8.2.2.5 Software design and code shall be
software. All patches must be clearly modular in an effort to reduce logic errors and
documented for meaning and logged with configu- Improve logic error detection and correction
ration control to maintain accurate change functions.
trail records for customer acceptance and
delivery. 8.2.2.6 Memory locations shall have unique

references (e.g.., one and only one name) to

8.2.1.7 Any and all assumptions concerning prevent memory useage conflicts between
unknown or unstated requirements and/or inter- global/local variables.
faces at any level of hardware or software must
be clearly stated for the target code. This 8.2.2.7 The system executive software shall
Includes *TBD" requirements/Interfaces as well maintain system control at all times.
as missing links/unspecified items.

8.2.2.8 Hazardous processes requiring criti-
8.2.1.8 Any and all deviations and waivers to cal timing shall be automated. (Refers to event
the requirements and/or Interfaces at any level sequences which must be tightly controlled
of hardware or software must be clearly stated and/or beyond human response time.)
for the target code Including implications or
explanations to limitations. 8.2.2.9 Operations employing time limits

impacting system safety shall have these time
8.2.1.9 The operating system (OS) software, limits included in the software decision logic.
as much of It that is used in the total soft- Both relative time and mission/absolute time
ware, must be clearly described, Including limits must be included when specified and used
shareable re-entrant library-type of routines as part of the design.
and primitives. The portion of this OS soft-
ware used by the critical software must be 8.2.2.10 The safety-critical time limits in
clearly Identified as to the purpose for which the software logic shall not be changeable by
it is used. an operator/flight officer from a console/

cockpit.
8.2.2 Critical Software/CPU/System Design
Rules 8.2.2.11 Upon detection of an anomaly, the

system/weapon shall revert to a safe configure-

8.2.2.1 Any single CPU controlling a process tion.

which could result In major system loss, dam-
age, or loss of human life shall be incapable 8.2.2.12 Upon detection of a critical anomaly,

of satisfying all the requirements for Initia- the software shall inform the operator what

tion of a critical process. In a multiple CPU anomaly was detected. Non-critical anomalies
environment, two or more CPU's shall be shall be recorded or reported by telemetry to

required to initiate such a process. In a aid in system analysis.

22 AFISC SSH 1-1 5 September 1985

0
8.2.2.13 Upon detection of a critical anomaly, and/or data dedicated to critical software
the software shall inform the operator what functions.
action was taken. System response to non-
critical anomalies shall be available for sys- 8.2.2.25 There shall be provisions to protect
tern analysis. instruction types in any program memory region

from being used by any except critical software
8.2.2.14 Upon safing the system, the software functions. (Instructions, for example, which
shall identify the resulting system configu- can only be used In a supervisor mode.)
ration or status to the operator.

8.2.2.26 No software shall use a STOP or HALT
8.2.2.15 Workaround procedures shall not be instruction or cause a CPU WAIT state. The CPU
allowed when reverting to a safe configuration must always .be executing, whether idle with
after the detection of an anomaly, nothing to do or actively processing.

8.2.2.16 Safing scenarios for safety critical 8.2.2.27 Flags shall be unique and shall be
hardware items shall be designed into the single purpose.
logic.

8.2.2.28 Files shall be unique and shall be
8.2.2.17 The software system shall protect single purpose.
against unauthorized access.

8.2.2.29 CPU's that have simple Instruction
8.2.2.18 Software-controlled sequences affect- sets are preferred to CPU's that offer exten-
Ing safety shall require a minimum of two inde- sive instruction variants.
pendent procedures for Initiation.

8.2.2.30 CPU's that load entire Instructions
8.2.2.19 There shall be procedures to safely and data words are preferred to CPU's that
handle contingencies. multiplex Instruction and data words In

n-parts.
8.2.2.20 Interrupt priorities and responses
shall be specifically defined and implemented 8.2.2.31 CPU's that segregate instructions and
In the software. data memories in separate banks served by sepa-

rate (and different width) busses are preferred
8.2.2.21 The software shall be initialized to over CPU's that have a single memory bus to
a known and predictably safe state, from the access both instructions and data from the same
program counter initial value through program address space.
execution to initialize data memory values.

8.2.2.32 A CPU that time-shares its memory
8.2.2.22 The software shall terminate to a bus(es) between address and data functions
known and predictably safe state. All settable, should provide at least TUO complete clock
non-volittle devices and relays shall be set to cycles between functions on each bus.
a known, safe state in anticipation of system
restart or random power inputs/outputs. 8.2.2.33 Critical operational software

instructions must be resident in non-volatile
8.2.2.23 All unused memory locations shall be read-only memory (RON). If a safety kernal is
initialized to a pattern that If executed as an used, It also must be resident in RON.
instruction will cause the system to revert to
a known safe state. (For example,(assuming a 8.2.2.34 Data used by critical software should
Z-80 processor) any entry into a pattern of be protected by error checking and correcting
NOP,NOP,JNP,NOP,NOP,JNP,NOP,NOP.... would cause (ECC) memorylmmory controller.
a Jump to address 0000, where a system safety/
restart routine could reside.) 8.2.2.35 Fixed or one-time changing data used

to vector critical software should reside in
8.2.2.24 There shall be provisions to protect EARON, EERON, or similar latching memory for
the accessibility of memory region Instructions retention permanence. The write control of

AFISC SSH 1-1 5 September 1985 23

such memory shall be considered critical and 8.2.3.10 Unless specifically exempted, Input/
shall be treated in the same vein as a poten- output ports shall not be used for both criti-
tially hazardous event. cal and noncritical functions. Relates primar-

ily to CPU's with two or more dedicated
8.2.3 CPU-Hardware/Hardware-CPU Interfaces input/dedicated, output/dedicated, Input-

output/combination ports and special I/O
8.2.3.1 A status check of critical one-shot instructions to access them.
system elements shall be made prior to execut-
ing a potentially hazardous sequence. (Safe- 8.2.3.11 Critical input/output ports shall
arm-device (SAD) status, Interlock status, have addresses sufficiently different from
etc.) non-critical ports that a single (multiple)

address bit failure will not allow access to
8.2.3.2 An operational check of testable critical functions or ports. Relates primarily
critical system elements shall be made prior to to CPU's with memory-mapped I1/0 but can also
executing a potentially hazardous sequence. apply to CPU's with a single combination I/0
(Time clocks, door operation, batteries up, CPU port and instructions to access It.
execution, umbilical disconnected, etc.)

8.2.4 Other Hardware Factors/Utilities/Outside
8.2.3.3 Upon completion of a test where Influences
safety interlocks were removed, the restoration
of those interlocks shall be verified. 8.2.4.1 The system shall provide for a fail-

safe recovery from Inadvertent instruction
8.2.3.4 When software generates a hardware Jumps.
comand, a design analysis shall be performed
to determine if the comand should be continu- 8.2.4.2 The computer system shall be lmune to
ous until reversed or only used/applied for a the effects of temporary power outages.
discrete length of time. Reason: Potential
hazardous timing, sneak timing, etc. 8.2.4.3 The computer system shall be suffi-

ciently protected against the harmful effects
8.2.3.5 Decision logic using registers which of electromagnetic interferences.
obtain data values from end item hardware/
software shall not be based on values of all 8.2.4.4 The computer system shall be suffi-
"ones." ciently protected against the harmful effects

of electrostatic interference.
8.2.3.6 Decision logic using registers which
obtain data values from end item hardware/ 8.2.4.5 There shall be periodic memory integ-
software shall not be based on values of all rity checks (of both program and data memories
'zeros.' if separate or served by different busses).

8.2.3.7 Decision logic using registers which 8.2.4.6 The integrity of the instruction mem-
obtain data values from end item hardware/ ory RON should be enhanced with an ECC memory
software shall require a specific binary data controller or a periodic software/hardware
pattern of 'ones' and 'zeroes' to reduce the checksumming algorithm.
likelihood of malfunctioning end-item hardware/
software satisfying the decision logic. 8.2.4.7 There should be periodic data and

program memory bus operational checks.
8.2.3.8 Separate 'arm' and 'fire' coumands

shall be required for ordnance initiation. 8.2.5 (Interrupt) Operating SystemlUtilities
Software

8.2.3.9 Critical hardware controlled by soft-
ware shall be initialized to a known safe 8.2.5.1 The software shall discriminate
state, between false and valid interrupts.

24 AFISC SSH 1-1 5 September 1985

.2.5,2 Operating System (OS) software, work- to the weapon itself. The operator does have
ing on a fixed stack size with accumulated control over the weapon until the 'pickle'
depth in applications use, shall not get lost button Is depressed, but from that time on,
In the sense of overflowing and overwriting safety of the weapon operation rests entirely
other program instructions or data or in the on the internal and autonomous weapon design.
sense of overflowing and not being able to Notable exceptions would be weapons undergoing
correctly return all previous calls, tests where a command destruct function is

provided.
8.2.5.3 Operating System software shall place
all shareable CPU resources on the stack/other 8.2.6.1 The software shall require two or more
prescribed memory area before a called module operator responses for initiation of any poten-
begins to execute with these resources. In tially hazardous sequence. No hazardous
most applications, this requires a full and sequence shall be initiated without operator
complete verification of the compiler and/or intervention and that sequence shall not be
assembler process tool to produce such machine initiated by a single operator keyboard entry.
code for the source code writer. In some
cases, this OS software Is coded once and 8.2.6.2 Operator interactions with the soft-
replicated/called from each interrupt executive ware shall be concise.
to handle any and all interrupt level software
requests. 8.2.6.3 The software shall provide for detec-

tion of improper sequence requests by the
8.2.5.4 Re-entrant and shareable software operator.
utilities, such as trigonometric functions,
primitives, etc, shall not overwrite their 8.2.6.4 The software shall provide for notifi-
temporary scratch memory areas when they are cation of improper keyboard entries by the
used in several levels of prioritized interrupt operator.
processes.

8.2.6.5 The software shall provide for opera-
8.2.5.5 Re-entrant and shareable software tor cancellation of current processing.
utilities shall not Internally call another
utility. For example, the SIN function shall 8.2.6.6 Operator cancellation of current proc-
not call a SQRT function and a TAN function essing shall require a single keystroke opera-
shall not call a LOG function. tor response.

8.2.6 Operator Interfaces 8.2.6.7 Cancellation of processing shall be
accomplished in a safe manner.

The following items generally do not apply to
embedded weapon software, such as software 8.2.6.8 Any override of a safety Interlock
embedded in an airborne guided missile or a shall be identified to the test conductor via
smart bom. The operator interface is external display on the test conductor's CRT.

0

AFISC SSH 1-1 Appendix 5 September 1985 25

APPEND ICES

NOTE: The following appendices are EXAMPLES and are NOT designed to be used asO written. NMR do-they imply any preferred analysis methodoloy They must all
barefu tailored to reflectthe analysismethods) desr nhse

on which it(they) are to be applied!

26 AFISC SSH 1-1 Appendix A 5 September 1985

APPENDIX A. SOFTWARE SAFETY ANALYSIS following documents of the issue noted or, if
SPECIFICATION - EXAMPLE not noted, the issue in effect as of the date

of the contract as shown in Department of
NOTE: The following is strictly an EXAMPLE] Defense Index of Specifications and Standards
It is NOT designed to be used as written NOR form a part of this specification.
is it implied that sneak analysis is the pre-
ferred analysis methodologyl An actual soft-
ware safety analysis specification must be TABLE 1. APPLICABLE DOCUMENTATION
carefully tailored based both on the tech-
nique(s) involved and the system to which It
is to be applied. DOCUMENT NUMBER DOCUMENT NAME

Purpose. The sneak analysis technique described
herein establishes possible procedure for per- 1. MIL-STD-785B Reliability Program
forming the analysis and reporting the results. (15 September 1980) Plan for Systems and
The analysis is used to systematically iden- Equipment
tify and report sneak conditions. Document
errors discovered during the sneak analysis are 2. MIL-STD-781C Reliability Design
also reported. (21 October 1977) Qualification and

Acceptance Test
Usage. Sneak analysis is a powerful tool to Standard
identify system conditions that could degrade (App. A, para 40.7)
or adversely impact mission safety or basic
equipment reliability. It is a topological, 3. NIL-STO-882B System Safety Program
graphical technique that can be applied to both (30 March 1984) Requirements
hardware and software. The purpose of software
sneak analysis is to define logic control paths 4. NAVSAEA TEOI- Contracting and Manage-
which cause unwanted operations to occur or AA-6YD-0O2/SCA meit Guide for Sneak'
which bypass desired operations without regard Circuit Analysis
to failures of the hardware system to respond
as programed. After a sneak circuit analysis 5. 000 5000.40 Reliability and Main-
and a software sneak analysis have been per- (8 July 1980) tainability (para D.2a)
formed on a system, the interactions of the
hardware with the system software can readily
be determined. The effect of a control opera- Requirements: During the full-scale engineering
tion that is initiated by some hardware element development and/or unlimited production phase,
can be traced through the hardware until it the contractor shall conduct or contract for
enters the system software. The logic flow can sneak analysis of circuitry/software critical
then be traced through the software to deter- to mission success or crew safety. The analy-
mine its ultimate impact on the system. ses shall identify latent paths which cause
Similarly, the logic sequence of a software- unwanted functions to occur or which inhibit
initiated action can be followed through the desired functions. Potential design or equip-
software and electrical circuits until its ment weaknesses are to be identified and
eventual total system impact can be assessed, reported. An assessment of the system impact is
Finally, the analysis should be considevid for to be provided for the potential problem along
crttical systems and functions where .. ak with a recommendation for corrective action.
conditions cannot be tolerated, sneak condi- In making these analyses, all components/
tions are suspected, or an unusually large software shall be assumed to be functioning
number of anomalies have been observed to occur properly. These analyses shall be performed on
without any reasonable Justification. the actual code and specifications for the

software to be analyzed during the full-scale
Applicable Documents: (Software Sneak documen- engineering development of later phases.
tation is pending and the following documents Equivalent or design type drawings or logic
apply to hardware SCA only. They would need flows shall be used during earlier development

tailoring for use on software systems.) The phases.

AFISC SSH 1-1 Appendix A 5 September 1985 27

The contractor shall present in the proposal a effect of the sneak conditions on system per-
complete list or description of the functions/ formance, (4) establishing accept/reject crite-
circuitry/software for which sneak analysis is ria, and (5) reporting of results to the
to be conducted. The list of those functional procuring activity.
circuits/software to be analyzed shall be pre-
sented to the procuring activity together with The contractor shall identify latent flow
the rationale for any deviations to the speci- paths, unexpected operational modes, unneces-
fied systems. sary components, etc., In case of hardware; or

unused and inaccessible paths, improper branch
The contractor shall specify the overall task sequencing, undesirable loops, etc., in the
period of performance along with subtask peri- case of software.
ods of performance. Periodic reviews or report
periods shall be established to promote timely The contractor shall document the criteria,
transmission and consideration of contractor assumptions, delineation of sneak paths, etc.,
reports. A final report documenting the task of the analysis. The data shall be maintained
and all findings shall be prepared, including and updated to reflect any changes In equipment

the network tree database. A final report for configuration, If funded by contract.
the baseline analysis shall be required, fol-
lowed at the conclusion of the change analysis Assumptions. Assumptions are made when perform-

task with a final report documenting the ing sneak analysis to establish the analysis
change analysis reports, boundaries, define terminology, and keep the

scope within cost-effective bounds.

The contractor shall indicate the level of the
sneak analysis task In the proposal. The typi- TABLE 2. SOFTWARE SNEAK ANALYSIS ASSUMPTIONS
cal software task occurs at the instruction
level where cause and effect relationships are A. THE SOFTWARE SPECIFICATION IS THE

studied in detail. Systems defined as within DESIGN INTENT OF THE SOFTWARE.

scope of the contracted effort should be ana-
lyzed to the detail component level. An inter- B. THE ASSEMBLER OR COMPILER DOES NOT

face analysis should be performed for that INTRODUCE ERRORS INTO THE SOFTWARE.
portion of out-of-scope software directly
interfacing with the in-scope systems. C. ASSEMBLED OR COMPILED SOFTWARE IS FREE

OF SYNTAX ERRORS, I.E., TYPOGRAPHICAL ERRORS.
Technique. Four classical categories of the
sneak analysis technique shall be addressed: D. THE DATA PROVIDED REPRESENT THE COM-

PLETE SOFTWARE PROGRAM UNDER CONSIDERATION.

a. Sneak paths, which allow software logic
to flow along unsuspected routes. E. HARWARE-INDUCED PROBLEMS ARE NOT

CONSIDERED.

b. Sneak timing, which causes functions to
be inhibited or to occur unexpectedly as a
result of timing or function sequencing. Quality Assurance Provisions. To insure that a

valid sneak analysis will be accomplished,

c. Sneak labels, which cause an operator provisions must be established to provide

to initiate incorrect stimuli, that: (1) all paths within a system have been
analyzed, (2) each path is directly traceable

d. Sneak indicators, which produce aubigu- to the network tree in which it was analyzed,
ous or false displays. (3) each component/statement is directly trace-

able to the path in which it was analyzed, and

A formal sneak analysis shall involve: (1) (4) each component/statement Is directly
classifying basic circuit or software recogni- traceable to the specific documentation used to

tion patterns into which the system elements establish the data base master file.

fall, (2) application of 'clues" or sneak
condition criteria, applied to these patterns The following provisions shall be used to pro-

to uncover sneak conditions, (3) assessing the duce a valid sneak analysis:

28 AFISC SSH 1-1 Appendix A 5 September 1985

1. Network trees analyzed for sneak conditions 3. All software network trees, completely
shall be traceable to the system's source code. annotated to show code represented, shall be
TIe network trees shall contain all statements furnished as part of the output of this analy-
used to generate the tree. Further, all paths sis. These trees should be in a neat and under-
necessary to initiate and complete a given standable format and shall represent a
function shall be shown or referenced on one self-contained data base from which other
network tree. analyses (software fault tree, software hazard)

may be done.

2. Cross-references listing data content and 4. Each path shall be independently analyzed
allowing traceability of the network trees as to its effects on system operation and
shall be furnished. records maintaines indicating analysis results.

AFISC SSH 1-1 Appendix B 5 September 1985 29

APPENDIX B. REQUEST FOR PROPOSAL EXAMPLE 2. Purpose - The purpose(s) for requesting the
sneak analysis should be stated. The rationale

NOTE: The following Is strictly an EXAMPLE! may be oriented toward problem identification
It is NOT designed to be used as written NOR of design analysis at the validation and full-
is it implied that sneak analysis Is the pre- scale engineering development phases or problem
ferred analysis methodology! An actual soft- identification or change analysis in later
ware safety analysis request for proposal must development phases. This section should stipu-
be carefully tailored based both on the tech- late the task as being a "one-shot* analysis, a
nique(s) involved and the system to which it continuing analysis with change analysis
is to be applied. included, or a combination of sneak analysis

with one or more analysis techniques. Combined
Sneak Analysis Request for Proposal Considera- hardware and software sneak analyses techniques
tions. The basic requirements for a procuring are to be stipulated as an Integrated analysis
activity-initiated sneak analysis request for (system, interface, detailed).
proposal (RFP) are presented In this section.
The outline can be tailored by the procuring 3. Scope of Effort - The task scope should
activity to suit a specific application. The delineate task requirements, depth of analysis,
outline is intended to be specific enough for system or subsystems included In the analysis,
the procuring activity to properly assess and period of performance, and deliverable end
evaluate contractor responses. Evaluation products. The scoping paragraphs may contain
criteria are also presented to provide a basis important notes or clauses from the remaining
for evaluation. The outline of the sneak analy- RFP items described in this section. Specific
sis RFP and evaluation criteria are shown in systems, subsystems, or portions of the soft-
Table 1. ware my be excluded from the effort and listed

in this section. If multiple systems or sub-
systems are to be analyzed one at a time, the

TABLE 1. OUTLINE OF A SNEAK ANALYSIS RFP PROPOSAL order and time phasing for each subtask should

be specified. The responsibility for data
REQUEST FOR PROPOSAL (RFP) OUTLINE acquisition should be identified as a task for

the procuring activity, the sneak analysis
1. PROGRAM NAME 8. DATA REQUIREMENTS contractor, or a third party. When classified
2. PURPOSE OF RFP 9. TASK DESCRIPTIONS systems are to be analyzed, security require-
3. SCOPE OF EFFORT 10. DELIVERABLES ments should be specified for personnel, facil-
4. APPLICABLE 11. MISCELLANEOUS ities, documentation handling procedures, and

SUBSYSTEMS computer processing. The task scope should
5. ANALYSIS DEPTH 12. FACILITIES AND specify whether a change analysis Is included

SECURITY in the overall effort, and if so, the number
6. CHANGE ANALYSIS 13. COST and type of acceptable changes should be

OPTION specified.
7. ADDITIONAL 14. TIME REQUIREMENTS

ANALYSIS 4. Applicable Subsystems - Applicable software
is to be accurately and completely identified

EVALUATION CRITERIA (EC) in the RFP. Figures and pictures may be used to
clarify and bound the applicable areas. Accu-

1. UNDERSTANDING PROBLEM 4. COST racy is required in this item because cost,
2. RELEVANT PAST PERFORMANCE 5. SCHEDULE schedule, or problem identification limitations
3. CAPABILITY TO PERFORM may require analysis of only portions of par-

ticular subsystems and whole subsystems in
others. Whenever portions of primary functions

Request for Proposal Items: in the applicable subsystems continue into
equipment or software not considered in scope,

1. Program Name - This is a title of the sneak it is necessary to provide interface control
analysis task which is generally the program documents, functional system diagrams, or
name. The major subsystem equipment or software logic-type diagrams that identify or depict the
name may be added to the title, remainder of the function.

30 AFISC SSH 1-1 Appendix B 5 September 1985

5. Analysis Depth - Analysis depth is an systems in the same way as a detailed failure
Important scoping consideration because It has mode and effects analysis. The network tree
a direct bearing on cost, schedule, and antic- data base also serve as the basis for other
iv ed results. The procuring activity should analyses, which eliminates duplicate efforts,
specify the level of the sneak analysis standardizes the configuration, and lowers the
required as system, interface or detail level, overall costs.
This RFP item is important to the procuring
activity because It enables a correlation RFP 8. Data Requirements - Analysis requires cor-
response. Some responses may cover the desig- pilable source code listings, system block
nated software for markedly lower cost and diagrams, high-level functional diagrams and
schedule time due to performance of a higher program description documents, including
level systems analysis rather than a more requirements and specifications. Also, ;any
detailed systems analysis. The analysis depth logic flow diagrams, flowcharts, machine spa-
specified in the RFP must be matched to the cific procedures, system architecture, and
level of detail In the acquired documentation, program environment information is needed where

applicable.
6. Change Analysis Option - The incorporation
and analysis of software code instruction The procuring activity must assign the data
changes must be specified in the RFP if desired acquisition task responsibility to the prime
by the procuring activity. The change option contractor and subcontractors to the procuring
may be limited to an analysis for only the activity Itself, or to the performing sneak
proposed software design changes brought about analysis contractor. The procuring activity,
by prime contractor response to sneak analysis working through the prime contractor and yen-
reports. A more formal change analysis would dors, has been the customary designee for this
include all changes to a particular configura- task. Allocations for the data acquisition
tion baseline. In either case, the procuring effort will be made regardless of who is
activity should specify the number and type of selected. Items to be considered for this
changes desired and the change analysis period effort are the prime contractor and vendor
of performance costs and delivery schedules if they are desig-

nated for data acquisition. The procuring
7. Additional Analyses - Whenever sneak analy- activity and the sneak analysis contractor
sis is to be performed in conjunction with require funding to identify, order, and possi-
other analyses, the selection and phasing of bly travel to acquire the documentation.
the tasks should be specified. Care should be
exercised in this process to insure that the The procuring activity should verify that the
maximum benefits are achieved for each of the overall program contract has requirements for
analyses. Combined analyses are usually per- prime contractor, subcontractor and vendor
formed on highly criticality software. They deliveries of software code and documentation
may also be applied to areas which have been which will permit sneak analysis to be per-
manifesting anomalies. Combining analyses is formed in a timely and cost effective manner.
also a means of achieving cost reductions. If delivery of code documentation and code has
Central to any analysis is the effort required not been contracted for In the overall program
to establish the configuration on which the procurement process, additional cost will be
analysis is to be performed. A combined analy- incurred by the procuring activity In obtaining
sis effort requires the design configuration data for the analysis. Third party agreements
building only once, and this has typically been will also have to be established which Identify
accomplished by the sneak analysts task for the documentation users, the purpose, data
electrical and software systems. The sneak handling procedures, period of usage, and final
analysis network tree approach provides a fume- disposition of the documentation.
tional layout of the system where cause and
effect relationships can be identified and Documentation acquisition must be timely and
depicted easily. While the fundamental premise complete early in the sneak analysis task or
of sneak analysis assumes no equipment or soft- schedule impacts will occur. The majority of
ware failures, failures can be postulated at sneak analysis tasks are under 9 months in

any level and their effects traced through the duration which means that the complete

AFISC SSH 1-1 Appendix B 5 September 1985 31

documentation for such a task should be status report is the primary means of conveying
received within a month of task initiation. the findings of the task in a timely fashion.
Definite milestone dates indicating 50 percent Requirements for either bi-weekly or monthly
and 100 percent levels for data acquisition status reports should be specified. For long-
should be stated in the RFP. duration projects special quarterly reports

which summarized the activities of the previous
The RFP should specify when the analysis is to 3 month period may be required.
include classified systems so that special
handling procedures are instituted. Personnel b. Sneak Analysis Reports - This category
availability with proper security clearance of reports includes software sneak reports,
levels must be established, along with facility software design concern reports, and software
clearances. If data processing is to be per- drawing error reports. The primary intent of
formed using classified data, then the computer each report is to document problems found In a
and computer facility must have been approved form that Is understandable, clear, concise,
for classified data processing, and easily verifiable. The paperwork should

serve as a link from the sneak analysis con-
9. Task Descriptions - The RFP should stipu- tractor to the procuring activity and on to the
late that the competing sneak analysis contrac- prime contractor. The sneak analysis report
tors provide a description of the tasks they should briefly describe the undesirable condi-
are to perform to identify sneak conditions In tion and reference relevent documentation.
software. The approach should be systematic,
thorough, and complete. The task description c. Final Report - This report summarizes
should also declare whether any automation aids the entire activities of the sneak analysis
are contemplated for use in accomplishing the task. The report should Include the project
sneak analysis task. Descriptions of the auto- purpose, scope, and an overall evaluation of
mation aids should be provided including the the analyzed system(s). A complete listing of
rationale for use. Relevant points to consider all documentation used in the analysis should
for automation include: be provided so that the configurations for the

baseline system and system changes can be
a. Direct conversion of prime contractor established. A brief description of the project

manufacturing data from magnetic tape (or other tasks should be Included. A tabulation of all
suitable media) to acceptable input format for reports issued by the sneak analysis contractor
the sneak analysis computer programs, to the procuring activity should also be

included, along with copies of each report.
b. Generation of the network trees used in Any problems which had an impact on the suc-

the analysis phase. cessful completion of the task according to the
scope and terms of the originating RFP should

c. Change analysis, also be documented in the final report.

10. Deliverables - The deliverables of a sneak d. Network Tree Data Base. All hier-
analysis task should be specified in the con- archical network trees generated during the
tractor proposal, along with concise descrip- analysis, drawn in a neat and well annotated
tions of each item. As a minimum, the specified manner, showing the code represented by the
reports and the network tree data base should tree and completely relatable to the software
be furnished along with any data cross refer- being analyzed.
ences generated. As a minimum, the following
output reports should be included: The three report types just presented are the

minimum deliverables for a sneak analysis task.

a. Periodic Status Report - This report If change analysis is to be performed, any
documents the progress of the various sneak problem conditions can be reported sufficiently
analysis subtasks, identifies any problems with the above type reports. If a verification
encountered in the analysis which might Impede of checklists, technical orders (TOs), or other
successful completion of the project, tabulates military-type procedure lists are included
all sneak reports issued, and includes copies within the scope of the contracted effort,
of the sneak reports as they are issued. The slightly modified versions of the sneak

32 AFISC SSH 1-1 Appendix B 5 September 1985

analysis reports may be desirable. In this 13. Cost - Cost breakouts for the various sneak
instance, the reports would identify operator- analysis tasks will normally be a separate
ir.-.ced errors, errors In control sequencing, report or volume from the RFP to allow an
and errors of interpretation and reaction to impartial evaluation of the technical portion
equipment displays. Additional reports gener- of the RFP. Cost factors include analysis per-
ated to document the results of other analysts sonnel, computer processing, classified data
techniques should also be described and handling, data acquisition, travel, performance
included in the final report. The final report of other analyses, and computer program devel-
could also be used to implement the recommenda- opment (if any).
tion to measure sneak analysis effectiveness.

14. Time Requirements - The time requirements
11. Miscellaneous - Other uses of the data base (if any) of the procuring activity should be
should be reported separately. The requirements stated In the RFP. Dates for support of CDR,
for the sneak analysis contractor over and first flight, or major systems tests have a
above the baseline analysis should be speci- direct bearing on the tasks and sequences of,,
fled. This may include, but not be limited to, tasks performed by the sneak analysis contrac-
the following: tor. If the analysis is "one-shot" and scoped

to a single system or portion of a single sys-
a. Additional analyses, such as failure tem, then the task approach is fairly direct.

mode and effects analysis, fault tree analysis, Otherwise, multiple systems analysis or com-
and change analysis. bined analyses will require the contractor to

prioritize the systems and the tasks within
b. Data acquisition and travel, each system.

c. Program review support to provide liai-
son and inputs for milestone events such as
PDR, CDR, first flight, or scheduled tests. Evaluation criteria items:

d. Computer tool development, possibly In
the area of converting prime contractor data to 1. Understanding of the task - Understanding
a format usable In the analysis phase, of the task is an important evaluation crite-

rion to judge sneak analysis proposals. The
e. Classified data handling, evaluation criterion looks not only for an

understanding of the contractor's sneak analy-
12. Facilities and Security - Facilities and sis process and task relationships but also the
security requirements should be a part of the need and use of the analysis to satisfy the
RFP, even when classified data systems are not procuring activity's requirements in a timely
involved. This feature protects the propri- and cost-effective manner.
etary rights, if any, of the software owner.
The entire contractor facility or some desig- The task process may be different from contrac-
nated portion thereof should be cleared to tor to contractor but will probably progress
handle the highest level documentation comtem- according to the following order:
plated for use by the sneak analysis contrac-
tor. Personnel should have at least a. Data Acquisition
corresponding security clearances. This
includes direct management, engineers and soft- (1) Identify and acquire data if so
ware analysts, clerks, secretaries, aides, and tasked.
any other personnel participating In the clas-
sified portion of the ana'ysis. If any portion (2) Log all documentation received.
of the task is computer-aided, then the person-
nel, computer, and computer facility must also (3) Review all documentation for com-
be cleared. Disposition requirements to return pleteness and correct level of detail.
or destroy acquired documentation and sneak
analysis contractor-generated reports must be (4) Identify missing and required
specified. documentation.

AFISC SSH 1-1 Appendix B 5 September 1985 33

b. Preanalysis (5) Annotate interface Information for
out-of-scope systems.

(1) Identify functions in thedocumentation. g. Analysis

(2) Verify system interconnections. (1) Identify topographs (software

patterns) in network trees.
(3) Exclude all areas of documentation

out of scope for the effort. (2) Apply "clues* for each topograph.

(4) Review adequacy of interface (3) Compare network trees to func-
equipment and/or software documentation. tional system flows.

c. Partitioning (4) Compare network trees to interface
control documents.

(1) Subdivide or software by functions
or structure. (5) Compare network trees to procedure

checklists.
(2) Annotate documentation for subse-

quent encoding task. (6) Perform timing analyses where
required (i.e., interrupt and data availability

d. Encoding (only if computer processing analysis).
is used)

h. Problem Reporting

(1) Convert detailed source code to
computer format. (1) Assess problem categorization

(documentation, design, sneak).S (2) Automate conversion process.
(2) Identify relevant documentation.

(3) Verify data waster files reflect
actual system configuration. (3) Describe problem.

e. Computer Processing (4) Determine system impact.

(1) Edit and analyze all user inputs. (5) Provide sketch of system Illus-
trating problem.

(2) Connect all and software code (and
circuit segments if appropriate.) 1. Status Reporting

(3) Produce hardcopy plots of system (1) Provide periodic status reports
network trees. (bi-weekly or monthly) and contract funds

status reports (or equivalent) providing *dol-
f. Network Tree Generation lar" Information.

(1) Manually develop network trees if (2) Provide quarterly status reports,
no automation aids are used. If required.

(2) Annotate all functional remarks on (3) Include all reports issued during
network trees, the period.

(3) Annotate all cross-references on (4) Tabulate and Identify report5 network trees, dispositions.

(4) Identify and annotate relevant J. Change Data Receipt (if change analysts
descriptive documentation, option is included).

34 AFISC SSH 1-1 Appendix B 5 September 1985

(1) Acquire proposed and/or Imple- evaluate responses, the contractor should be
mented system changes, required to provide task synopses similar to

those required by the application guidelines
(2) Log all documentation received, procurement and, in addition, provide, upon

request, copies of final reports for procuring

(3) Group changes by function or con- activity inspection. Resumes of key personnel
figuration control board package numbers, should also be provided. Emphasis should be

placed on showing experience in similar
k. Change Data Incorporation programs.

(1) Determine extent of change 3. Capability to Perform - Capability to per-
package, form sneak analysis Is the evaluation criterion

which will be the most difficult to assess.
(2) Update network trees. Different approaches will be offered in com-

petitive proposals by prospective contractors.

1. Change Data Analysis Some may include the formal sneak analysis
process, variations to the process, or substi-

(1) Reanalyze all changed network tution of other analysis techniques to achieve
trees. the same end results. As a minimum, the capa-

bility to perform the basic tasks listed in
(2) Reanalyze all changed network Item I would be a prerequisite for further

trees affected by the changed network trees, proposal evaluation. Some of the main task
headings May change, but the overall tasks

(3) Rerun timing analyses, if should be equivalent. Current automation aids
necessary. and descriptions of their Intended use should

certainly strengthen the evaluation rating in
(4) Problem reporting Is the same as the capability to perform criteria.

baseline analysis.
4. Cost - Line item costs for the basic analy-

m. Final Report sis, change analysis, and other analyses should
be separately reported in the proposal. Costs

(1) Summarize task purpose and scope. for personnel, management, and clerical support
should be delineated, as well as computer proc-

(2) Describe analysis technique. essing costs, travel costs, and any other mis-
cellaneous cost items. In general, the greater

(3) Provide composite listing of all number of executable instructions in the
documentation, software, the greater the sneak analysis cost.

However, cost needs to be evaluated against
(4) Provide tabulation of all reports proposed depth of analysis and against the

and dispositions. quality of the code. Well structured, modular-
ized, and will documented code is cheaper to

(5) Provide copies of all reports. analyze.

(6) Provide copies of all reports. 5. Schedule - Contractor schedules should be
evaluated for the proper sequencing and dura-

(7) Provide network tree data base and tion of tasks. They should identify all major
data cross references. task functions and project milestones. Since

data acquisition is very critical, early mile-
2. Relevant Past Performance - Actual perfor- stones for data receipt are an absolute neces-
mance, along with an assessment of that perfor- sity. Network tree construction can either be
mence, should be demonstrated and presented In shown as one complete task of relatively short
the contractor's proposal. The distinction duration In the first half of the project or as
between actual performance and performance a continuing process throughout most of the
capability needs to be identified and evaluated period of performance. Either approach is
In the contractor's response. To adequately acceptable. Analysis is the wain task element

AFISC SSH 1-1 Appendix B 5 September 1985 35

of the procurement. The longest duration task delivery. If classified or proprietary data;

should be the analysis, but the schedule dura- are used, there should be a final data disposi-
tion my not indicate such mphasis. tion task included.

Contract Selection: Selection of the type of
The contractor schedule should also Include contract desired for the sneak analysis pro-

support of reviews, other analysis technique curement Is primarily the option of the pro-
sequencing and duration, change analysis if curing activity and should be stipulated in the

selected, and final report preparation and RFP.

I

p

36 AFISC SSH 1-1 Appendix C 5 September 1985

APPENDIX C. STATEMENT OF WORK EXAMPLE level, the procuring activity may begin the
procurement process by proceeding to the func-

,.TE: The following is strictly an EXAMPLE! tion In block 8 of Figure 1. However, since
It is NOT designed to be used as written NOR the original estimate was a rough order of
is it implied that sneak analysis is the pre- magnitude, it may be necessary to perform a
ferred analysis methodology! An actual soft- more detailed estimate of costs to achieve
ware safety analysis statement of work must be higher confidence Ii. the cost figures.
carefully tailored based both on the tech-
nique(s) involved and the system to which it If the task cost significantly exceeds the
is to be applied. allocated analysis cost, additional decisions

must be made by considering reduction of analy-
Tailoring Statement of Work Requirements. The sis scope or combining sneak analysis with
process for tailoring sneak analysis statement another analysis.
of work requirements to acquisitions of various
types is shown in generalized form in Figure 1. 5. System Scope Reduction - If the rough order
The process assumes that an assessment of of magnitude estimate exceeded the planned task
specification requirements and application allocation, a critical analysis of the desig-
guidelines resulted in a decision to perform nated systems should be performed to isolate
the sneak analysis task. The need and the the desired functions. In effect, the task
rationale for the task are thus established, effort should be scoped from the overall system
The process flow is now directed toward deter- level to the subsystem level and possibly even
mining how the procurement is to be to the instruction level. Noncritical func-
implemented. tions should be eliminated and a new scope of

effort determined. The reduced task scope may
Tailor Prrcess: The process flow shown will be then be evaluated against the original state
presented as a step-by-step description of each ment of need and costs recomputed by entry to
function or decision block. The blocks are block 2. Process cycling through scope reduc-
numbered to clarify the path direction within tions and cost computations may occur until
the decision tree. desired task cost levels are achieved.

1. Identify Analysis Areas - The process NOTE - The procuring activity could request
begins in block I with an identification of contingency funds to supplement the original
relevant systems or subsystems. On the initial task l !rgr= ^-t13:icy funds
pass, all software within each of the desig- are those dollars not previously allocated to
nated systems may be scoped to determine over- other analyses. Sufficient budget could then
all rough order of magnitude costs, be obtained, and the process flow could proceed

to block 8.
2. Estimate System Size - Block 2 requires an
estimation of the number of instructions in the 6. Combine Analyses - If it is not possible to
software system. Typical systems are composed reduce the number of functions scoped for the
of high-order languages, assembly languages, analysis task, the procuring activity should
and machine code. Each instruction can be consider combining sneak analysis with other
translated into an equivalent number of assem- analysis tasks. The overall cost of performing
bly language instructions, sneak analysis with specific analyses, such as

failure mode and effects analysis and fault
3. Compute Cost - Based on the data from items tree analysis, is lower than performing all
1 & 2 compute rough order of magnitude costs, three tasks separately. In this way, lower
Software quality and languages involved will overall budget expenditures can be obtained for
greatly influence potential costs, the combined tasks. The resulting allocations

should be sufficient for the combined tasks. If
4. Acceptable Cost Range - The derived rough the resulting budget allocation is sufficient,
order of magnitude cost of the sneak analysis proceed to block 8; otherwise the sneak analy-
task is compared to the budget levels allocated sis task must be deferred until supplemental
in the original program reliability plan. If funds are available or the procurement can-
anticipated costs are within the budgeted celed. An option is availahle tc the procuring

AFISC SSH 1-1 Appendix C 5 September 1985 37

activity that removes the requirement for an Figure 1. Tailoring Statement of Work Require-
Interface sneak analysis. Very early in the ments
program development phase (concept or valida-
tion phase) this my be a viable alternative. STATEMENT OF WORK FOR SOFTWARE
From the full-scale development phase and later
phases, the analysis should be at the detailed 1. GENERAL
level to obtain significant results.

A software sneak analysis shall be performed on
7. Defer Procurement - If this task decision the system. The analysis
block is reached, a reconsideration of ration- shall be performed using topological/graphical
ale or statement of need should be made. If the techniques as referenced in section 3.4.2.2.
decision is mede to defer the task at the ear- This analysis shall identify data paths and
liest available time. The cost to identify logic conditions that can cause an unwanted
problems, correct design, and implement function to occur or inhibit a desired func-
changes increases dramatically when problems tion without a hardware failure. Recommenda-
are detected In later project development tions for corrective action to eliminate these
phases. conditions shall be provided. Also, document

errors and areas of design concern discovered
8. Contract Selection - After the sneak analy- during the analysis shall be reported.
sis task is properly scoped and program funds
are allocated, the next function to be per- 2. SCOPE
formed is selection of the type of contract and
statement of work. The selection of the proper The software sneak analysis shall cover
statement of work is dependent on the software the software programs for use by the
composition and the addition of other task system computer(s). The
analyses, software shall be analyzed at the executable

code/instruction level. The software program is
9. Competitive Procurement - The decision to coded in .
issue a sole-source procurement or a competi-
tive-bid procurement can probably be made at an 3. CHANGE ANALYSIS (OPTIONAL)
earlier time in the process flow. If sole
source selection is desired, proceed to block The analysis shall include changes due to cor-
13 of the proces4 flow. If a competitive-bid rective action taken to eliminate sneak analy-
procurement is selected, the decision should be sis Identified problems received prior to
made earlier in the development flow to over- _ 19 . The change analysis
come the attendant delay in the project Initia- shall be limited to a total equal to p__per
tion schedule until contract award, cent of the baseline design data base as estab-

lished by actual count of software instructions
10. Issue RFP - The bid package should then be added, deleted, or revised due to corrective
circulated and announced in publications such changes. Wherever possible, all changes shall
as Commerce Business Daily. be submitted by copies of the completed soft-

ware problem/change reports, copies of the
11. Evaluate Responses - Evaluation criteria revised data tapes or card decks, and listings.
considerations were presented earlier and my
be used as the basis for evaluating con- 4. TASK DESCRIPTIONS
tractor responses. Care should be taken not
to bias in favor of any one methodology, so Specific tasks to be performed as part of this
long as a topological/graphical approach is analysis contract shall consist of the
maintained. following:

12. Contract Award - Contract award to the 4.1 Receive and set up files for the software
winning bidder is the final step In the com- program and any design and program documenta-
petitive procurement process and represents the tion defining the operation and functions of
initiation of the sneak analysis task. the software to be analyzed.

38 AFISC SSH 1-i Appendix C 5 September 1985

4.Z Develop a software network tree data base. 5.2.3 Unused software instructions.

-.3 Perform a sneak analysis on the resulting 5.2.4 Specifications not met or not clear.
software network trees to identify potential
sneak conditions, such as: 5.3 Prepare software document error reports

(SDERs) on discepancies found in the input
4.3.1 Sneak paths, which may allow data or data for the analysis. Each report shall
logic to flow along an unexpected route, identify the discrepant document and explain

the error relstive to referenced supporting
4.3.2 Sneak timing, which may cause data or documentation.
logic to flow or to inhibit a function at an
unexpected time. 5.4 Prepare and submit activity reports to

describe the work accomplished during the

4.3.3 Sneak indications, which may cause an reporting period. The reports will include
ambiguous or false display of system operating analysis progress, problems, recommendations,
conditions. and results of meetings. The reports shall be

submitted in accordance with the contract CfRL.
4.3.4 Sneak labels, which may cause incorrect The SSRs, SOCrs, and SOERs generated during the
stimuli to be Initiated. reporting period shall be attached. A tabula-

tion of all previously submitted. reports (SSR,
5. REPORTS SDCR, and SDER), including status, shall o

attached to each activity report.
Reports will be submitted in accordance with
the contract CORL. 5.5 Perform analysis of software changes,

prodided a change analysis is elected, and
5.1 Prepare sneak software reports (SSRs) on submit appropriate reports.
all sneak conditions found. Each report shall
describe the sneak condition in detail. The SSR 5.6 Prepare and submit a final report contal:i-
shall include a listing of the suspect software ing a summary of the analysis effort, includia
instructions where appropriate. Recomnenda- the general analysis method used, the extent of
tions for appropriate corrective action shall the analysis, conclusions drawn, and recommen-
be given along with reference to supporting da+ions based on the analysis. All SSRs,
documentation. The report forms include a SDCRs, and SOERs written shall be included as
section for the customer to indicate the action well as the completely annotated network tree
taken to resolve the condition being reported, data base. One report shall be prepared at the
All reports shall be appropriately dated, completion of the baseline analysis, and if a
titled, and numbered for indexing and change analysis is performed, the report shall
tracking. be revised to include any additional reports

resulting from the change analysis.

5.2 Prepare software design concern reports
(SDCRs) to describe certain items of concern 6. DATA REQUIREMENTS
with specific design implementation. The condi-
tions to be reported Include: The analysis will be based on the source list-

ing and source code which should be provide|l
5.2.1 Questionable design practices, in a machine readable format. If the & al)sis

is to be based on a high-order language, thal
5.2.2 Unnecessary software instruction, the source program listing, high-order sourc

AFISC SSH 1-3 Xppendix C 5 September 1985 39

O code, and an assembled program listing should 7. PERIOD OF PERFORMANCE
be provided. All reference manuals for the
computer, cross-assembler, language, and oper-
ating system should be made available. Also, The period of performance for the sneak analy-
time/cost may be saved If other program docu- sis of the
mentation be provided, such as module descrip- system shall be months after receipt of input

tions, flow diagrams and data structure data necessary to establish the configuration
definitions, so that the potential system im- as defined In paragraph 2, SCOPE. Change
pact for problems found can be more accurately analysis shall be performed on all previously

assessed. The above data will be fur- described changes received prior to
nished . All data must be deliv- , 19_, and the final report

ered by to enable a timely and accurate shall be submitted by _ 19_, pro-

analysis. Delay in receipt of data will result vided the contractor has acknowledged all
in a day-for-day slide in the schedule, and the reports by having signed each report and
contract price shall be equitably adjusted to stated the action taken to correct the reported
reflect additional costs, if any. problem.

0

